您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 弹性力学基本概念和考点
基本概念:(1)面力、体力与应力、应变、位移的概念及正负号规定(2)切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。(3)弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。(4)平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,0,0,0zzxzy,由切应力互等,0,0,0zxzyz,这样只剩下平行于xy面的三个平面应力分量,即,,xyxyyx,所以这种问题称为平面应力问题。设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zxzy,根据切应力互等,0,0xzyz。由胡克定律,0,0zxzy,又由于z方向的位移w处处为零,即0z。因此,只剩下平行于xy面的三个应变分量,即,,xyxy,所以这种问题习惯上称为平面应变问题。(5)一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。(6)圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7)轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一、平衡微分方程:(1)平面问题的平衡微分方程;00yxxxxyyyfxyfxy(记)(2)平面问题的平衡微分方程(极坐标);10210ff1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。二、几何方程;(1)平面问题的几何方程;xyxyuxvyvuxy(记)(2)平面问题的几何方程(极坐标);1212121uuvvuv1、几何方程反映了位移和应变之间的关系。2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移)三、物理方程;(1)平面应力的物理方程;1121xxyyyxxyxyEEE(记)(2)平面应变的物理方程;22111121xxyyyxxyxyEEE(3)极坐标的物理方程(平面应力);1()1()12(1)EEGE(4)极坐标的物理方程(平面应变);221()11()12(1)EEE四、边界条件;(1)几何边界条件;平面问题:ssuusvvv在us上;(2)应力边界条件;平面问题:xyxxsxyyyslmflmf(记)(3)接触条件;光滑接触:nnn为接触面的法线方向非光滑接触:nnnnuun为接触面的法线方向(4)位移单值条件;2uu(5)对称性条件:在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一﹑概念1.弹性力学,也称弹性理论,是固体力学学科的一个分支。2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、断裂力学、复合材料力学。3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛5.弹性力学基本方法:差分法、变分法、有限元法、实验法.6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。8.几何方程反映的是形变分量与位移分量之间的关系。9.物理方程反映的是应力分量与形变分量之间的关系。10.平衡微分方程反映的是应力分量与体力分量之间的关系。11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。14.圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。15.求解平面问题的两种基本方法:位移法、应力法。16.弹性力学的基本原理:解的唯一性原理﹑解的叠加原理﹑圣维南原理。会推导两种平衡微分方程17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数(2)由式(2-24),根据应力函数求得应力分量(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主要边界上的面力边界条件(2-15)或次要边界上的积分边界条件,分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或者根据已知面力确定应力函数或应力分量表达式中的待定系数18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式(2)按式(2-24),由应力推出应力函数f的一般形式(含待定函数项);(3)将应力函数f代入相容方程进行校核,进而求得应力函数f的具体表达形式;(4)将应力函数f代入式(2-24),由应力函数求得应力分量(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全5.平面问题的应力边界条件为7.圣维南原理的三个积分式如果给出单位宽度上面力的主矢量和主矩,则三个积分边界条件变为8.艾里应力函数)()()()(sfmlsfmlysyxyxsxyx2/2/2/2/2/2/2/2/2/2/2/2/1)(1)(1)(1)(1)(1)(hhyhhlxxyhhxhhlxxhhxhhlxxdyyfdyydyyfydydyyfdyshhlxxyhhlxxNhhlxxFdyMydyFdy2/2/2/2/2/2/1)(1)(1)(yxyxyfxyxxfyyxxyyyxx),(,),(,),(22222填空计算理解计算一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)1、弹性力学建立的基本方程多是偏微分方程,还必须结合(C)求解这些微分方程,以求得具体问题的应力、应变、位移。A.相容方程B.近似方法C.边界条件D.附加假定2、根据圣维南原理,作用在物体一小部分边界上的力系可以用(B)的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。A.几何上等效B.静力上等效C.平衡D.任意3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为(B)。A.平衡方程、几何方程、物理方程完全相同B.平衡方程、几何方程相同,物理方程不同C.平衡方程、物理方程相同,几何方程不同D.平衡方程相同,物理方程、几何方程不同在研究方法方面:材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV的平,结果比较精确。4、常体力情况下,用应力函数表示的相容方程形式为024422444yΦyxΦxΦ,6、设有函数hyhyqyhyhyqx332332251344,(1)判断该函数可否作为应力函数?(3分)(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(lh)。(15分)解:(1)将φ代入相容方程024422444yΦyxΦxΦ,显然满足。因此,该函数可以作为应力函数。题九图Oxh/2h/2y(2)应力分量的表达式:22323322333222461342,3346yhhqxyxhyhyqxhqyhqyhyqxyxyyx考察边界条件:在主要边界y=±h/2上,应精确满足应力边界条件qhyhyqhyhyy23321342013422332hyhyyhyhyq04622232hyhyxyyhhqx在次要边界x=0上,应用圣维南原理,可列出三个积分的应力边界条件:)(03342/2/3302/2/奇函数dyhqyhqydyhhxhhx03342/2/3302/2/ydyhqyhqyydyhhxhhx002/2/dyxhhxy在次要边界x=l上,应用圣维南原理,可列出三个积分的应力边界条件:)(033462/2/33322/2/奇函数dyhqyhqyhyqldyhhlxhhx233462/2/33322/2/qlydyhqyhqyhyqlydyhhlxhhxqlyhhqldyhhlxhhxy2/2/2232/2/46对于如图所示的矩形板和坐标系,结合边界上面力与应力的关系,当板内发生上述应力时,由主边界和次边界上的应力边界条件可知,左边、下边无面力;而上边界上受有向下的均布压力;右边界上有按线性变化的水平面力合成为一力偶和铅直面力。所以,能够解决右端为固定端约束的悬臂梁在上边界受均布荷载q的问题。2009~2010学年第二学期期末考试试卷(A)卷一.名词解释(共10分,每小题5分)1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。应力符号的规定为:正面正向、负面负向为正,反之为负。4.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。1.(8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面
本文标题:弹性力学基本概念和考点
链接地址:https://www.777doc.com/doc-5969209 .html