您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 会议纪要 > 几种随机微分方程数值方法与数值模拟(李炜)
分类号密级UDC学校代码10497学位论文题目几种随机微分方程数值方法与数值模拟英文题目SeveralNumericMethodsforStochasticDifferentialEquationandNumericalSimulation研究生姓名李炜姓名黄樟灿职称教授学位博士单位名称理学院邮编430070姓名职称单位名称邮编申请学位级别硕士学科专业名称应用数学论文提交日期2006年10月论文答辩日期2006年11月学位授予单位武汉理工大学学位授予日期答辩委员会主席评阅人2006年11月指导教师副指导教师独创性声明本人声明,所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其它人已经发表或撰写过的研究成果,也不包含为获得武汉理工大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。研究生签名:_____________日期:_________关于论文使用授权的说明本人完全了解武汉理工大学有关保留、使用学位论文的规定,即学校有权保留、送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其它复制手段保存论文。(保密的论文在解密后应遵守此规定)研究生签名:______________导师签名:_________________日期:____________武汉理工大学硕士学位论文I摘要随机微分方程的理论广泛应用于经济、生物、物理、自动化等领域,然而在很长一段时间里,由于缺乏有效的求解随机系统的数值方法以及足够强大的计算机计算能力,在实际问题中,以随机微分方程(组)为代表的描述物理现象的许多复杂的数学模型或者被束之高阁,或者被迫通过忽略随机因素而简化,均不能得到很好的应用。可喜的是近十年来,在随机微分方程数值解方面已取得了一些成就,这意味着由某些随机微分方程描述的数学模型可以借助于计算机进行研究。本文首先介绍了随机微分方程的背景知识及其理论解的重要性质。其中通过随机积分导出了Ito型和Stratonovich型两种重要形式的随机微分方程,并给出了计算随机积分期望的相关引理;介绍了随机微分方程强解的存在唯一性定理,对于线性随机微分方程,给出了解的解析表达式;推导了解的随机Taylor展开式。由于随机系统的复杂性,一般情况很难得到方程理论解的解析表达式。这样一来,数值方法的构造显得尤为重要。现在对随机微分方程数值解的研究还处在初级阶段。为了构造有效的数值方法,首先要考虑到数值方法的收敛性和稳定性。本文介绍了随机微分方程理论解的随机渐进稳定性和均方(MS)稳定性,同时介绍了数值解的MS-稳定性和T-稳定性。在主体部分,本文分别通过直接截断随机Taylor展开式和比较理论解与随机Runge-Kutta格式的Taylor展开式的方法分别得到了数值求解随机微分方程的Taylor方法和Runge-Kutta方法,并对具体方法进行了MS-稳定性分析,对实际算例进行了数值模拟。其中显式Euler-Mayaruma方法和Milstein方法是求解Ito型随机微分方程的基本方法。本文在此基础上介绍了相应的半隐式Euler-Mayaruma方法、Milstein方法和隐式Euler-Taylor方法、Milstein方法,并通过截断随机Taylor展开式的方式推导了1.5阶Taylor方法。在推导具体的Runge-Kutta方法时,本文首先介绍了Runge-Kutta方法在常微分方程中的应用,形式上类比得到了随机Runge-Kutta方法。通过应用有根树理论简化了Runge-Kutta格式的Taylor展开式,应用阶条件构造了3级显式(M2)和3级半隐式(SIM1)两个具体的Runge-Kutta格式。稳定性分析表明各种数值方法的隐式格式稳定性优于相应的显式格式和半隐式格式。数值模拟表明新格式M2和SIM1与经典的Runge-Kutta格式(如4级显式(M3)和2级对角隐式(DIM1))一样具有较高的数值精度。关键词:随机微分方程;收敛性;稳定性;Taylor方法;Runge-Kutta方法武汉理工大学硕士学位论文IIAbstractThetheoryofstochasticdifferentialequation(SDE)waswidelyappliedinthefieldsofeconomy,biology,physicsandautomatization.However,duringquitealongperiodoftime,duetothelackofefficientnumericalmethodsforsolvingstochasticsystemsandcomputerswithsufficientpower,manycomplicatedmathematicalmodelsthatattempttorepresentphysicalphenomena,suchasSDE(s),hadbeenputasideorsimplifiedwhenappliedinpracticalproblemsbyomittingstochasticfactors.Thusthesemodelswerejustbeautifulinformandneverfullyutilized.Fortunately,inthepastdecadeorsonumericalmethodsforSDE(s)havemadesomecheeringachievements,whichpredicatesomemathematicalmodelsrepresentedbySDE(s)arebeingresearchedwithcomputers.First,thebackgroundofSDEandtheimportanceofitstheoreticalsolutionareintroduced.TwooftheveryimportantformsofSDE,ItoSDEandStratonovichSDE,arededucedbystochasticintegralsandseverallemmasaboutthemomentsofstochasticintegralsarealsogiveninthepaper.Inaddition,ImentionthetheoremgivingnecessaryandsufficientconditionsfortheexistenceanduniquenessofasolutiontoSDEandIgiverepresentationformulaeofsolutionsoflinearSDEs.AndthestochasticTaylorseriesofsolutionarededuced.Forthecomplexityofstochasticsystems,it'sverydifficulttocalculatetherepresentationformulaeofsolutionsofgenericSDE.Thusconstructingnumericmethodsisparamount.Nowadays,theresearchofnumericalsolutionofSDEisstillinitsnascentstate.Convergenceandstabilityneedtobeconsideredbeforedevelopingefficientnumericalmethods.Stochasticasymptoticalstabilityandthatinmean-squaresense(MS-stability)ofthetheoreticalsolutionisintroducedinthepaper,aswellasMS-stabilityandT-stability.Inthebodyofthepaper,bothdirecttruncationofstochasticTaylorseriesandacomparisonoftheTaylorseriesofthetheoreticalsolutionanditscorrespondingRunge-Kuttaformareconsidered,whichleadtoTaylormethodsandRunge-Kuttamethods.ForTaylormethods,explicitEuler-MayarumamethodandMilsteinmethodarebasicforsolvingItoSDE(s),onwhichbasisSemi-implicitEuler-Mayarumamethod,Semi-implicitMilsteinmethod,implicitEuler-TaylormethodandimplicitMilsteinmethodareintroducedandorder1.5Taylormethodareobtaininthesimilarway.ForRunge-Kuttamethods,theirapplicationtoordinarydifferentialequationarementionedatfirstandthestochasticsettingsareconstructedbycomparison.RootedtreetheorysimplifiestheformofRunge-KuttamethodsandtwonewRunge-Kuttamethodsof3stageexplicit(M2)and3stagesemi-implicit(SIM1)aredesigned.Intheend,stabilityanalysesundermean-squaresenseareperformedonconcretemethodsandnumericalsimulationsareimplemented,whichillustrateimplicitformout-performssemi-implicit,andsemi-implicitisbetterthanexplicitinstabilityforeverymethod,andnewmethodsM2,SIM1havethesamerelativelyhighernumericalprecisionastheclassicalRunge-Kuttamethods(eg.4stageexplicit(M3)and2stagediagonalimplicit(DIM1)).Keywords:SDE,convergence,stability,Taylormethods,Runge-Kuttamethods武汉理工大学硕士学位论文III目录第1章引言.....................................................................................................................................11.1随机微分方程的起源与基础研究内容................................................................................11.2数值解的研究意义................................................................................................................1第2章随机微分方程预备知识.............................................
本文标题:几种随机微分方程数值方法与数值模拟(李炜)
链接地址:https://www.777doc.com/doc-5970841 .html