您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2020二轮复习物理选择题专练第01周第1练解析版
2020年高考模拟理科综合之物理选择题专练第1周第1练二、选择题:本题共8小题,每小题6分。在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。14.甲、乙两物体先后从同一地点出发,沿一条直线运动,它们的v-t图象如图所示,由图可知()它们之间的距离为乙追上甲前的最大距离A.甲比乙运动快,且早出发,所以乙追不上甲B.t=20s时,乙追上了甲C.在t=20s之前,甲比乙运动快;在t=20s之后,乙比甲运动快D.由于乙在t=10s时才开始运动,所以t=10s时,甲在乙前面,【答案】C【解析】由图可知乙在0~10s内速度为零,甲先出发,但乙出发做匀加速直线运动,甲做匀速直线运动,两物体出发地点相同,则乙可以追上甲,A错误;由图象的面积可以读出20ts时,乙的位移仍小于甲的位移,未追上甲,B错误;在20ts之前,甲的图象在乙的上方,所以甲运动的比乙快,20ts之后乙的图象在甲的上面,所以乙比甲运动得快,C正确;在10~20s内,甲的速度大于乙的速度,甲在乙的前方,两者距离逐渐增大,20s后乙的速度大于甲的速度,两者距离逐渐减小,在20ts时刻两者距离最大;D错误15.如图所示,劲度系数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体P接触,但未与物体P连接,弹簧水平且无形变。现对物体P施加一个水平向右的瞬间冲量,大小为I0,测得物体P向右运动的最大距离为x0,之后物体P被弹簧弹回最终停在距离初始位置左侧2x0处。已知弹簧始终在弹簧弹性限度内,物体P与水平面间的动摩擦因数为μ,重力加速度为g,下列说法中正确的是()A.物体P与弹簧作用的过程中,系统的最大弹性势能20032PIEmgxmB.弹簧被压缩成最短之后的过程,P先做加速度减小的加速运动,再做加速度减小的减速运动,最后做匀减速运动C.最初对物体P施加的瞬时冲量0022ImgxD.物体P整个运动过程,摩擦力的冲量与弹簧弹力的冲量大小相等、方向相反【答案】C【解析】因物体整个的过程中的路程为4x0,由功能关系可得:220001·422Imgxmvm==,可知,0022Imgx=,故C正确;当弹簧的压缩量最大时,物体的路程为x0,则压缩的过程中由能量关系可知:20012PmvmgxE=,所以:EP=202Im−μmgx0(或EP=3μmgx0).故A错误;弹簧被压缩成最短之后的过程,P向左运动的过程中水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,可知物体先做加速度先减小的变加速运动,再做加速度增大的变减速运动,最后物体离开弹簧后做匀减速运动;故B错误;物体P整个运动过程,P在水平方向只受到弹力与摩擦力,根据动量定理可知,摩擦力的冲量与弹簧弹力的冲量的和等于I0,故D错误.故选C.16.如图所示,半径为R的绝缘圆筒内分布着匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一个质量为m、电荷量为q的正离子(不计重力)以某一速度从筒壁上的小孔P进入筒中,速度方向与半径成=30°夹角并垂直于磁场方向.不计离子和筒壁通撞时能量和电荷量的损失.若粒子在最短的时间内返回P孔,则离子的速度和最短的时间分别是()A.2qBRm`mqBB.2qBRm`23mqBC.3qBRm`mqBD.3qBRm`3mqB【答案】B【解析】离子只与圆筒碰撞一次,经历的时间最短,轨迹如图所示:设离子在磁场中的轨迹半径为r,速度为v,根据向心力公式2vqvBmr①结合图中的几何关系可得r=2R②解得离子的速率v=2RqBm③离子在磁场中走过的每段圆弧对应的圆心角α=60∘④经历的时间t=T/3⑤即t=23mqBA.2qBRm、mqB,与结论不相符,选项A错误;B.2qBRm、23mqB,与结论相符,选项B正确;C.3qBRm、mqB,与结论不相符,选项C错误;D.3qBRm、3mqB,与结论不相符,选项D错误;故选B.17.如图所示,静止在水平地面上倾角为θ的光滑斜面体上,有一斜劈A,A的上表面水平且放有一斜劈B,B的上表面上有一物块C,A、B、C一起沿斜面匀加速下滑.已知A、B、C的质量均为m,重力加速度为g.下列说法正确的是()A.A、B间摩擦力为零B.C可能只受两个力作用C.A加速度大小为gcosθD.斜面体受到地面的摩擦力为零【答案】B【解析】对B、C整体受力分析,受重力、支持力,B、C沿斜面匀加速下滑,则A、B间摩擦力不为零,故A错误;如果B的上表面是光滑的,倾角也为,C可能只受两个力作用,B正确;选A、B、C整体为研究对象,根据牛顿第二定律可知A加速度大小为sing,C错误;对A、B、C和斜面体整体分析,系统在水平方向上有加速度,由牛顿第二定律可知,斜面体受地面的摩擦力不为零,故D错误.18.如图所示,电源电动势为E,内阻为r,电路中的2R、3R分别为总阻值一定的滑动变阻器,0R为定值电阻,1R为光敏电阻(其电阻随光照强度增大而减小),当开关S闭合,电容器中一带电微粒恰好处于静止状态,下列说法中正确的是()A.只断开开关S,电容器所带电荷量变大,带电微粒向上运动B.只调节电阻3R的滑动端2P向上移动时,电压表示数变大,带电微粒向下运动C.只调节电阻2R的滑动端1P向下移动时,电压表示数变大,带电微粒向上运动D.只增大1R的光照强度,电阻0R消耗的功率变大,带电微粒向上运动【答案】D【解析】只断开开关S,电容器放电,所带电荷量变小,带电微粒向下运动,所以A错误;电阻R3与电容器串联,该之路断路,所以只调节电阻R3的滑动端P2向上移动时,电压表示数不变,带电微粒静止不动,所以B错误;只调节电阻R2的滑动端P1向下移动时,外电路电阻不变,路端电压不变,故电压表示数保持不变,电容器的电压增大,带电微粒向上运动,C错误;只增大R1的光照强度,R1的阻值减小,电流增大,所以电阻R0消耗的功率变大,带电微粒向上运动,D正确.19.如图所示,在光滑的水平桌面上有体积相同的两个小球A、B,质量分别为m=0.1kg和M=0.3kg,两球中间夹着一根压缩的轻弹簧,原来处于静止状态,同时放开A、B球和弹簧,已知A球脱离弹簧的速度为6m/s,接着A球进入与水平面相切,半径为0.5m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道竖直的直径,210/gms,下列说法正确的是A.弹簧弹开过程,弹力对A的冲量大于对B的冲量B.A球脱离弹簧时B球获得的速度大小为2m/sC.A球从P点运动到Q点过程中所受合外力的冲量大小为1N·sD.若半圆轨道半径改为0.9m,则A球不能到达Q点【答案】BCD【解析】弹簧弹开两小球的过程,弹力相等,作用时间相同,根据冲量定义可知,弹力对A的冲量大小等于B的冲量大小,故A错误;由动量守恒定律12mvMv,解得A球脱离弹簧时B球获得的速度大小为22/vms,故B正确;设A球运动到Q点时速率为v,对A球从P点运动到Q点的过程,由机械能守恒定律可得22111222mvmgRmv,解得:v=4m/s,根据动量定理1()1ImvmvNs,即A球从P点运动到Q点过程中所受合外力的冲量大小为1N·s,故C正确;若半圆轨道半径改为0.9m,小球到达Q点的临界速度3/QvgRms,对A球从P点运动到Q点的过程,由机械能守恒定律22111222mvmgRmv,解得0v,小于小球到达Q点的临界速度,则A球不能达到Q点,故D正确。故选BCD。20.如图所示,光滑水平面上存在有界匀强磁场,磁感应强度为B,质量为m、边长为a的正方形线框ABCD斜向穿进磁场,当AC刚进入磁场时,线框的速度为v,方向与磁场边界成45,若线框的总电阻为R,则()A.线框穿进磁场过程中,框中电流的方向为DCBAB.AC刚进入磁场时线框中感应电流为2BavRC.AC刚进入磁场时线框所受安培力大小为222BavRD.此进CD两端电压为34Bav【答案】CD【解析】线框进入磁场的过程中穿过线框的磁通量增大,由楞次定律可知,感应电流的磁场的方向向外,则感应电流的方向为ABCD方向,故A错误;AC刚进入磁场时CD边切割磁感线,AD边不切割磁感线,所以产生的感应电动势EBav,则线框中感应电流为 EBavIRR,此时CD两端电压,即路端电压为3344RUEBavR,故B错误,D正确;AC刚进入磁场时线框的CD边产生的安培力与v的方向相反,AD边受到的安培力的方向垂直于AD向下,它们的大小都是FBIa,由几何关系可以看出,AD边与CD边受到的安培力的方向相互垂直,所以AC刚进入磁场时线框所受安培力为AD边与CD边受到的安培力的矢量合,即2222vFRFBa合,故C正确。故选CD。21.波粒二象性是微观世界的基本特征,以下说法正确的有.A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等【答案】AB【解析】A.光电效应现象揭示了光的粒子性,A错误;B.热中子束射到晶体上产生的衍射图样说明中子具有波动性,B正确;C.黑体辐射的实验规律不能使用光的波动性解释,而普朗克借助于能量子假说,完美的解释了黑体辐射规律,破除了“能量连续变化”的传统观念,C错误;D.根据𝑝=√2𝑚𝐸𝑘可知质子和电子的质量不同,所以动量不相等,根据德布罗意波长公式𝜆=ℎ𝑝,则质子和电子的德布罗意波不相等,D错误.
本文标题:2020二轮复习物理选择题专练第01周第1练解析版
链接地址:https://www.777doc.com/doc-6006826 .html