您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2019届高考数学一轮复习第十章概率PPT课件
概率第十章第一节随机事件的概率高考概览1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别;2.了解两个互斥事件的概率加法公式.吃透教材夯双基填一填记一记厚积薄发[知识梳理]1.事件2.概率和频率(1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)概率:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用来估计概率P(A).nAn频率fn(A)(3)频率和概率的区别:频率反映了一个随机事件出现的频繁程度,但是频率是随机的,而是一个确定的值,通常人们用来反映随机事件发生的可能性的大小,有时也用来作为随机事件概率的估计值.概率概率频率3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:(2)必然事件的概率P(E)=.(3)不可能事件的概率P(F)=.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=,P(A)=[0,1].10P(A)+P(B).11-P(B).[温馨提示](1)一个认识:小概率事件很少发生,但不代表一定不发生,大概率事件经常发生,但不代表一定发生.(2)一个易错点:互斥事件与对立事件混淆.如果事件A与事件B互斥,则P(A+B)=P(A)+P(B),且P(A∩B)=0;如果事件A与事件B对立,则P(A)=1-P(B).如:抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=12,P(B)=16,则出现奇数点或2点的概率为.23[小题速练]1.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件[解析]事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,且“甲分得红牌”与“乙分得黄或蓝或白牌”是对立事件,故两事件是互斥但不对立事件.选C.[答案]C2.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.13[解析]甲不输包括两人下成和棋和甲获胜两种情况,由已知条件及互斥事件的概率公式可得甲不输的概率为12+13=56.[答案]A3.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n21001000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.715B.25C.1115D.1315[解析]由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,所以所求概率为33004500=1115.[答案]C4.给出下列三个命题,其中正确命题有__________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.[解析]根据随机事件发生的概率知①②③都是错误的.[答案]05.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级产品的概率为0.03,丙级产品的概率为0.01,则对成品抽查一件抽得正品的概率为________.[解析]记“生产中出现甲级产品、乙级产品、丙级产品”分别为事件A,B,C.又事件A,B,C彼此互斥.由题意可得,P(B)=0.03,P(C)=0.01.故所求事件“抽得正品”即事件A,其对立事件为B∪C.因为事件B,C彼此互斥,由互斥事件的概率公式,可得P(B∪C)=P(B)+P(C)=0.03+0.01=0.04.所以所求事件的概率P(A)=1-P(B∪C)=1-0.04=0.96.[答案]0.96考点突破提能力研一研练一练考点通关考点一随机事件的关系——基础考点(1)某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是()A.恰有2名男生与恰有4名男生B.至少有3名男生与全是男生C.至少有1名男生与全是女生D.至少有1名男生与至少有1名女生(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡[解析](1)在所选的4名同学中,“恰有2名男生”的实质是选出“2名男生和2名女生”,它与“恰有4名男生”不可能同时发生.所以A选项是互斥事件,但不是对立事件;“至少有3名男生”包括“3名男生,1名女生”和“4名男生”两种结果,这与“全是男生”可同时发生.所以B选项不是对立事件;“至少有1名男生”包括“1名男生,3名女生”、“2名男生,2名女生”、“3名男生,1名女生”和“4名男生”四种结果,这与“全是女生”不可能同时发生,且其中必有一个发生.所以C选项是互斥事件,且是对立事件;“至少有1名男生”包括“1名男生,3名女生”、“2名男生,2名女生”、“3名男生,1名女生”和“4名男生”四种结果,“至少有1名女生”包括“3名男生,1名女生”、“2名男生,2名女生”、“1名男生,3名女生”和“4名女生”四种结果,它们可能同时发生.所以D选项不是对立事件.(2)至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.[答案](1)C(2)A对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.[跟踪演练]将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过3,事件B表示向上的一面出现的点数不小于4,事件C表示向上的一面出现奇数点,则()A.A与B是对立事件B.A与B是互斥而非对立事件C.B与C是互斥而非对立事件D.B与C是对立事件[解析]由题意知,事件A包含的基本事件为向上的点数为1,2,3,事件B包含的基本事件为向上的点数为4,5,6,事件C包含的点数为1,3,5,A与B是对立事件.[答案]A考点二随机事件的概率与频率——常考点(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.[思路引导]读懂题意,用频率估计概率.[解](1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的概率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.(1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.[跟踪演练](2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.[解](1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.考点三互斥、对立事件的概率——基础考点一盒中装有大小和质地均相同的12只小球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率.[思路引导]记基本事件→分析所求事件特征→求互斥事件或对立事件的概率[解]记事件A={任取1球为红球};B={任取1球为黑球};C={任取1球为白球};D={任取1球为绿球},则P(A)=512,P(B)=412,P(C)=212,P(D)=112.由于A、B互斥,故(1)取出1球为红球或黑球的概率为P1=P(A)+P(B)=512+412=34.(2)解法一:由于A、B、C互斥,故取出1球为红球或黑球或白球的概率为P2=P(A)+P(B)+P(C)=512+412+212=1112.解法二:任取一球,取出的小球是红球或黑球或是白球的对立事件是取出一个小球是绿球.故P2=1-P(D)=1-112=1112求复杂的互斥事件的概率的一般方法(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率求和,运用互斥事件的概率求和公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维,特别是“至少”“至多”型题目,用间接法就显得较简便.[跟踪演练](2017·广东韶关模拟)我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的
本文标题:2019届高考数学一轮复习第十章概率PPT课件
链接地址:https://www.777doc.com/doc-6011398 .html