您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 化工热力学课后习题答案
优秀学习资料欢迎下载2习题第1章绪言一、是否题1.孤立体系的热力学能和熵都是一定值。(错。和,如一体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度的真空。当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下达到平衡,,,)2.封闭体系的体积为一常数。(错)3.封闭体系中有两个相。在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。(对)4.理想气体的焓和热容仅是温度的函数。(对)5.理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)6.要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。(错。V也是强度性质)7.封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有。(对。状态函数的变化仅决定于初、终态与途径无关。)8.描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。)9.自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致)10.自变量与独立变量是不可能相同的。(错。有时可以一致)三、填空题1.状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态。2.单相区的纯物质和定组成混合物的自由度数目分别是2和2。3.封闭体系中,温度是T的1mol理想气体从(P,V)等温可逆地膨胀到(P,V),则所做的功为iiff(以V表示)或(以P表示)。4.封闭体系中的1mol理想气体(已知),按下列途径由T1、P1和V1可逆地变化至P,则优秀学习资料欢迎下载mol,温度为和水。A等容过程的W=0,Q=,U=,H=。B等温过程的W=,Q=,U=0,H=0。C绝热过程的W=,Q=0,U=,H=。5.在常压下1000cm3液体水膨胀1cm3,所作之功为0.101325J;若使水的表面增大1cm2,我们所要作的功是J(水的表张力是72ergcm-2)。6.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg。7.1kJ=1000J=238.10cal=9869.2atmcm3=10000barcm3=1000Pam3。8.普适气体常数R=8.314MPacm3-11。四、计算题K-1=83.14barcm3-1mol-1-1K=8.314JmolK-1=1.980calmol-1K-1.一个绝热刚性容器,总体积为VtT,被一个体积可以忽略的隔板分为A、B两室。两室装有不同的理想气体。突然将隔板移走,使容器内的气体自发达到平衡。计算该过程的Q、W、和最终的T和P。设初压力是(a)两室均为P0;(b)左室为P0,右室是真空。解:(a)(b)2.常压下非常纯的水可以过冷至0℃以下。一些-5℃的水由于受到干扰而开始结晶,由于结晶过程进行得很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。已知冰的熔化热为333.4Jg-1在0~-5℃之间的热容为4.22Jg-1K-1解:以1克水为基准,即优秀学习资料欢迎下载由于是等压条件下的绝热过程,即,或3.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?解:4.对于为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程,其中,试问,对于的理想气体,上述关系式又是如何?以上a、b、c为常数。解:理想气体的绝热可逆过程,5.一个0.057m3气瓶中贮有的1MPa和294K的高压气体通过一半开的阀门放入一个压力恒定为0.115MPa的气柜中,当气瓶中的压力降至0.5MPa时,计算下列两种条件下从气瓶中流入气柜中的气体量。(假设气体为理想气体)(a)气体流得足够慢以至于可视为恒温过程;(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数)。解:(a)等温过程(b)绝热可逆过程,终态的温度要发生变化Kmol优秀学习资料欢迎下载mol五、图示题1.下图的曲线Ta和Tb是表示封闭体系的1mol理想气体的两条等温线,56和23是两等压线,而64和31是两等容线,证明对于两个循环1231和4564中的W是相同的,而且Q也是相同的。解:1-2-3-1循环,4-5-6-4循环,所以和优秀学习资料欢迎下载第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽变成固体,必须经过液相。(错。如可以直接变成固体。)2.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。)3.当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流体。)4.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z1。(错。如温度大于Boyle温度时,Z>1。)5.理想气体的虽然与P无关,但与V有关。(对。因。)6.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P-V相图上的饱和汽体系和饱和液体系曲线可知。)7.纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。)8.在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。(错。它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。(对。这是纯物质的汽液平衡准则。)10.若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。(错。)11.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。(错。只有吉氏函数的变化是零。)12.气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。)13.三参数的对应态原理较两参数优秀,因为前者适合于任何流体。(错。三对数对应态原理不能适用于任何流体,一般能用于正常流体normalfluid)14.在压力趋于零的极限条件下,所有的流体将成为简单流体。(错。简单流体系指一类非极性的球形流,如Ar等,与所处的状态无关。)二、选择题1.指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。参考P-V图上的亚临界等温线。)A.饱和蒸汽B.超临界流体C.过热蒸汽2.T温度下的过冷纯液体的压力P(A。参考P-V图上的亚临界等温线。)A.B.C.=3.T温度下的过热纯蒸汽的压力P(B。参考P-V图上的亚临界等温线。)A.B.C.=4.纯物质的第二virial系数B(A。virial系数表示了分子间的相互作用,仅是温度的函数。)A仅是T的函数B是T和P的函数C是T和V的函数D是任何两强度性质的函数5.能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须至少用到(A。要表示出等温线在临界点的拐点特征,要求关于V的立方型方程)优秀学习资料欢迎下载A.第三virial系数B.第二virial系数C.无穷项D.只需要理想气体方程6.当时,纯气体的的值为(D。因)A.0B.很高的T时为0C.与第三virial系数有关D.在Boyle温度时为零三、填空题1.纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为和。2.表达纯物质的汽平衡的准则有(吉氏函数)、(Claperyon方程)、(Maxwell等面积规则)。它们能(能/不能)推广到其它类型的相平衡。3.Lydersen、Pitzer、Lee-Kesler和Teja的三参数对应态原理的三个参数分别为、、和。4.对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,在P-T图上是重叠的(重叠/分开),而在P-V图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点。5.对三元混合物,展开第二virial系数,其中,涉及了下标相同的virial系数有,它们表示两个相同分子间的相互作用;下标不同的virial系数有,它们表示两个不同分子间的相互作用。6.对于三混合物,展开PR方程常数a的表达式,=,其中,下标相同的相互作用参数有,其值应为1;下标不同的相互作用参数有到,在没有实验数据时,近似作零处理。,通常它们值是如何得到?从实验数据拟合得优秀学习资料欢迎下载,且7.简述对应态原理在对比状态下,物质的对比性质表现出较简单的关系。8.偏心因子的定义是,其含义是。9.正丁烷的偏心因子=0.193,临界压力P=3.797MPa则在T=0.7时的蒸汽压为crMPa。10.纯物质的第二virial系数B与vdW方程常数a,b之间的关系为。四、计算题1.根据式2-26和式2-27计算氧气的Boyle温度(实验值是150°C)。解:由2-26和式2-27得查附录A-1得氧气的Tc=154.58K和=0.019,并化简得并得到导数迭代式,采用为初值,2.在常压和0℃下,冰的熔化热是334.4Jg-1,水和冰的质量体积分别是1.000和1.091cm3g-10℃时水的饱和蒸汽压和汽化潜热分别为610.62Pa和2508Jg-1,请由此估计水的三相点数据。解:在温度范围不大的区域内,汽化曲线和熔化曲线均可以作为直线处理。对于熔化曲线,已知曲线上的一点是273.15K,101325Pa;并能计算其斜率是PaK-1熔化曲线方程是对于汽化曲线,也已知曲线上的一点是273.15K,610.62Pa;也能计算其斜率是PaK-1汽化曲线方程是优秀学习资料欢迎下载,估计cmV)解两直线的交点,得三相点的数据是:Pa,K3.当外压由0.1MPa增至10MPa时,苯的熔点由5.50℃增加至5.78℃。已知苯的熔化潜热是127.41Jg-1苯在熔化过程中的体积变化?解:K得m3g-1=1.00863mol-14.试由饱和蒸汽压方程(见附录A-2),在合适的假设下估算水在25℃时的汽化焓。解:由Antoine方程查附录C-2得水和Antoine常数是故Jmol-15.一个0.5m3的压力容器,其极限压力为2.75MPa,出于安全的考虑,要求操作压力不得超过极限压力的一半。试问容器在130℃条件下最多能装入多少丙烷?(答案:约10kg)解:查出Tc=369.85K,Pc=4.249MPa,ω=0.152P=2.75/2=1.375MPa,T=130℃由《化工热力学多媒体教学》软件,选择“计算模块”→“均相性质”→“PR状态方程”,计算出给定状态下的摩尔体积,v=2198.15cm3mol-1m=500000/2198.15*44=10008.4(g)6.用virial方程估算0.5MPa,373.15K时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm3mol-1。已知373.15K时的virial系数如下(单位:cm3mol-1),。解:若采用近似计算(见例题2-7),混合物的virial系数是优秀学习资料欢迎下载cmcmolTc3-1mol7.用Antoine方程计算正丁烷在50℃时蒸汽压;用PR方计算正丁烷在50℃时饱和汽、液相摩尔体积(用软件计算);再用修正的Rackett方程计算正丁烷在50℃时饱和液相摩尔体积。(液相摩尔体积的实验值-1是106.94cm3mol)。解:查附录得Antoine常数:A=6.8146,B=2151.63,C=-36.24临界参数T=425.4K,P=3.797MPa,ω=0.193c修正的Rackett方程常数:α=0.2726,β=0.0003由软件计算知,利用Rackett方程8.试计算一个125cm3的刚性
本文标题:化工热力学课后习题答案
链接地址:https://www.777doc.com/doc-6021836 .html