您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 金融资料 > 2013年张家界市中考数学试卷及答案
2013年湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共计24分)1.(3分)(2013•张家界)﹣2013的绝对值是()A.﹣2013B.2013C.D.﹣2.(3分)(2013•张家界)下列运算正确的是()A.3a﹣2a=1B.x8﹣x4=x2C.D.﹣(2x2y)3=﹣8x6y33.(3分)(2013•张家界)把不等式组的解集在数轴上表示正确的是()A.B.C.D.4.(3分)(2013•张家界)下面四个几何体中,俯视图不是圆的几何体的个数是()A.1B.2C.3D.45.(3分)(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2﹣1D.x2﹣6x+96.(3分)(2013•张家界)顺次连接等腰梯形四边中点所得的四边形一定是()A.矩形B.正方形C.菱形D.直角梯形7.(3分)(2013•张家界)下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4D.圆的切线垂直于过切点的半径8.(3分)(2013•张家界)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共计24分)9.(3分)(2013•张家界)我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积,3000000用科学记数法表示为_________.210.(3分)(2013•张家界)若3,a,4,5的众数是4,则这组数据的平均数是_________.11.(3分)(2013•张家界)如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是_________.12.(3分)(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=_________.13.(3分)(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_________.14.(3分)(2013•张家界)若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是_________.15.(3分)(2013•张家界)从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是_________.16.(3分)(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=_________.三、解答题(本大题共9个小题,共计72分)17.(6分)(2013•张家界)计算:.318.(6分)(2013•张家界)先简化,再求值:,其中x=.19.(6分)(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.(8分)(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?21.(8分)(2013•张家界)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别ABCD处理方式迅速离开马上救助视情况而定只看热闹人数m30n5请根据表图所提供的信息回答下列问题:(1)统计表中的m=_________,n=_________;(2)补全频数分布直方图;(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?422.(8分)(2013•张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)23.(8分)(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).24.(10分)(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.525.(12分)(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.62013年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共计24分)1.(3分)(2013•张家界)﹣2013的绝对值是()A.﹣2013B.2013C.D.﹣考点:绝对值.3338333分析:计算绝对值要根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2013|=2013.故选B.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•张家界)下列运算正确的是()A.3a﹣2a=1B.x8﹣x4=x2C.D.﹣(2x2y)3=﹣8x6y3考点:幂的乘方与积的乘方;合并同类项;二次根式的性质与化简.3338333专题:计算题.分析:A、合并同类项得到结果,即可作出判断;B、本选项不能合并,错误;C、利用二次根式的化简公式计算得到结果,即可作出判断;D、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断.解答:解:A、3a﹣2a=a,本选项错误;B、本选项不能合并,错误;C、=|﹣2|=2,本选项错误;D、﹣(2x2y)3=﹣8x6y3,本选项正确,故选D点评:此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,熟练掌握公式及法则是解本题的关键.3.(3分)(2013•张家界)把不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.3338333专题:计算题.分析:求出不等式组的解集,表示在数轴上即可.解答:解:,7由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2013•张家界)下面四个几何体中,俯视图不是圆的几何体的个数是()A.1B.2C.3D.4考点:简单几何体的三视图.3338333分析:根据俯视图是分别从物体上面看,所得到的图形进行解答即可.解答:解:俯视图不是圆的几何体只有正方体,故选:A.点评:本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(3分)(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2﹣1D.x2﹣6x+9考点:因式分解-运用公式法.3338333分析:根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.解答:解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选:D.点评:本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.6.(3分)(2013•张家界)顺次连接等腰梯形四边中点所得的四边形一定是()A.矩形B.正方形C.菱形D.直角梯形考点:中点四边形.3338333分析:根据等腰梯形的性质及中位线定理和菱形的判定,可推出四边形为菱形.解答:解:如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,求证:四边形EFGH是菱形.证明:连接AC、BD.∵E、F分别是AB、BC的中点,∴EF=AC.同理FG=BD,GH=AC,EH=BD,8又∵四边形ABCD是等腰梯形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形.故选C.点评:此题主要考查了等腰梯形的性质,三角形的中位线定理和菱形的判定.用到的知识点:等腰梯形的两底角相等;三角形的中位线平行于第三边,并且等于第三边的一半;四边相等的四边形是菱形.7.(3分)(2013•张家界)下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4D.圆的切线垂直于过切点的半径考点:随机事件.3338333分析:必然事件就是一定发生的事件,即发生的概率是1的事件.解答:解:A、只有两边及夹角对应相等的两三角形全等,而两边及其中一边的对角对应相等的两三角形不一定全等,是随机事件;B、由于判别式△=1﹣4=﹣3<0,所以方程无实数根,是不可能事件;C、面积之比为1:4的两个相似三角形的周长之比也是1:2,是不可能事件;D、圆的切线垂直于过切点的半径,是必然事件.故选D.点评:本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.(3分)(2013•张家界)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.3338333分析:根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.9点评:本题
本文标题:2013年张家界市中考数学试卷及答案
链接地址:https://www.777doc.com/doc-6021878 .html