您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初中数学函数知识点归纳及学习技巧
1函数学习方法初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就等于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数。一、函数的概念1.概念:在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.2.自变量的取值范围:(1)使解析式有意义(2)实际问题具有实际意义3.函数的表示方法;(1)解析法(2)列表法(3)图象法【思想方法】数形结合二、(一)、一次函数1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状:一次函数ykxb的图象是经过(kb,0)和(0,b)两点的一条直线.(2)当b0时直线与y轴交于原点上方;当b0时,直线与y轴交于原点的下方。(3)当b=0时,y=kx(k≠0)为正比例函数,其图象是一过原点的直线。(4)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。一次函数图象和性质.一次函数ykxb的图象与性质(二)反比例函数1.定义:k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0图像的大致位置经过象限第象限第象限第象限第象限性质y随x的增大而y随x的增大而而y随x的增大而y随x的增大而2函数学习方法应注意的问题:中()是不为的常数;()的指数一定为“”ykxkx10212.图象及其性质:(1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()yxyx(3)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质3.k的几何含义:反比例函数y=kx(k≠0)中比例系数k的几何意义,即过双曲线y=kx(k≠0)上任意一点P作x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB的面积为.(三)、二次函数1.定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线k的符号k>0k<0图像的大致位置经过象限第象限第象限性质在每一象限内,y随x的增大而在每一象限内,y随x的增大而oyxyxo3函数学习方法3.图象的性质:分五种情况可用表格来说明表达式顶点坐标对称轴最大(小)值y随x的变化情况(1)y=ax2(0,0)直线x=0(y轴)①若a0,则x=0时,y最小=0②若a0,则x=0时,y最大=0若a0,则x0时,y随x增大而增大若a0,则当x0时,y随x增大而减小(2)y=ax2+c(0,0)直线x=0(y轴)①若a0,则x=0时,y最小=0②若a0,则x=0时,y最大=0①若a0,则x0时,y随x的增大而增大②若a0,则x0时,y随x的增大而减小(3)y=a(x-h)2(h,0)直线x=h①若a0,则x=h时,y最小=0②若a0,则x=h时,y最大=0①若a0,则xh时,y随x的增大而增大②若a0,则xh时,y随x的增大而减小表达式顶点坐标对称轴最大(小)值y随x的变化情况(4)y=a(x-h)2+k(h,k)直线x=h①若a0,则x=h时,y最小=k②若a0,则x=h时,y最大=k①若a0,则xh时,y随x的增大而增大②若a0,则xh时,y随x的增大而减小(5)y=ax2+bx+c(ba2,442acba)直线x=ba2①若a0,则x=ba2时,y最小=442acba②若a0,则x=ba2时,y最大=442acba①若a0,则xba2时,y随x的增大而增大②若a0,则xba2时,y随x的增大而减小4.应用:(1)最大面积;(2)最大利润;(3)其它4函数学习方法锐角三角函数【思想方法】1.常用解题方法——设k法2.常用基本图形——双直角【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=12,则tanB=______;(2)若cosA=45,则tanB=______.例题2.(1)已知:cosα=23,则锐角α的取值范围是()A.0°α30°B.45°α60°C.30°α45°D.60°α90°(2)当45°θ90°时,下列各式中正确的是()A.tanθcosθsinθB.sinθcosθtanθC.tanθsinθcosθD.sinθtanθcosθ
本文标题:初中数学函数知识点归纳及学习技巧
链接地址:https://www.777doc.com/doc-6049904 .html