您好,欢迎访问三七文档
动能定理与能量守恒一、2012大纲解读内容要求功、功率Ⅱ动能,做功与动能改变的关系Ⅱ重力势能.做功与重力势能改变的关系Ⅱ弹性势能Ⅰ机械能守恒定律Ⅱ能量守恒定律II二、重点剖析1、理解功的六个基本问题(1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。(6)做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化。2.理解动能和动能定理③动能为标量,但21222121mvmvEK仍有正负,分别表动能的增减。(3)系统机械能守恒的表达式有以下三种:4.理解功能关系和能量守恒定律三、考点透视考点1:平均功率和瞬时功率例1、物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端时,重力做功的功率为()A.ghmg2B.ghamg2sin21C.aghmgsin2D.aghmgsin2解析:由于光滑斜面,物体m下滑过程中机械能守恒,滑至底端是的瞬时速度ghv2,根据瞬时功率cosFvP。图1由图1可知,vF,的夹角a090则滑到底端时重力的功率是ghamgP2sin,故C选项正确。考点2:机车起动的问题例2、质量kgm3100.4的汽车,发动机的额定功率为KWp40,汽车从静止以2/5.0sma的加速度行驶,所受阻力NFf3100.2,则汽车匀加速行驶的最长时间为多少?汽车可能达到的最大速度为多少?考点3:动能定理的应用例3、如图2所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为0s,以初速度0v沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?图2考点4:会用相对滑SFQ解物理问题例4、如图4-2所示,小车的质量为M,后端放一质量为m的铁块,铁块与小车之间的动摩擦系数为,它们一起以速度v沿光滑地面向右运动,小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,则小车被弹回向左运动多远与铁块停止相对滑动?铁块在小车上相对于小车滑动多远的距离?图4-2以车为对象,摩擦力始终做负功,设小车对地的位移为车S,则: -车222121MvMvmgSx即:222)(2mMgvMS=车;系统损耗机械能为: 相fSQE22)(21)(21xvmMvmMmgS=相gmMMvS)(22=相;四、热点分析热点1:动能定理图6反思:应用动能定理解题时,要选取一个过程,确定两个状态,即初状态和末状态,以及与过程对应的所有外力做功的代数和.由于动能定理中所涉及的功和动能是标量,无需考虑方向.因此,无论物体是沿直线还是曲线运动,无论是单一运动过程还是复杂的运动过程,都可以求解.热点2:机械能守恒定律本题简介:本题考查学生对机械能守恒的条件的理解,并且机械能守恒是针对A、B两球组成的系统,单独对A或B球来说机械能不守恒.单独对A或B球只能运用动能定理解决。反思:绳的弹力是一定沿绳的方向的,而杆的弹力不一定沿杆的方向。所以当物体的速度与杆垂直时,杆的弹力可以对物体做功。机械能守恒是针对A、B两球组成的系统,单独对系统中单个物体来说机械能不守恒.单独对单个物体研究只能运用动能定理解决。学生要能灵活运用机械能守恒定律和动能定理解决问题。.热点3:能量守恒定律解析:木块与木板相互作用过程中合外力为零,动量守恒.反思:只要有滑动摩擦力做功就有一部分机械能转化为内能,转化的内能:相对滑SFQ,其中滑F为滑动摩擦力,相对S为接触物的相对路程。五、能力突破1.作用力做功与反作用力做功2.机车的启动问题例2汽车发动机的功率为60KW,若其总质量为5t,在水平路面上行驶时,所受的阻力恒为5.0×103N,试求:(1)汽车所能达到的最大速度。(2)若汽车以0.5m/s2的加速度由静止开始匀加速运动,求这一过程能维持多长时间?反思:机车的两种起动方式要分清楚,但不论哪一种方式起动,汽车所能达到的最大速度都是汽车沿运动方向合外力为零时的速度,此题中当牵引力等于阻力时,汽车的速度达到最大;而当汽车以一定的加速度起动时,牵引力大于阻力,随着速度的增大,汽车的实际功率也增大,当功率增大到等于额定功率时,汽车做匀加速运动的速度已经达到最大,但这一速度比汽车可能达到的最大速度要小。3.动能定理与其他知识的综合例3:静置在光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图5所示,图线为半圆.则小物块运动到x0处时的动能为()A.0B.0021xFC.004xFD.208x反思:不管是否恒力做功,也不管是否做直线运动,该动能定理都成立;本题是变力做功和力与位移图像相综合,对变力做功应用动能定理更方便、更迅捷,平时应熟练掌握。4、动能定理和牛顿第二定律相结合图10反思:动能定理是研究状态,牛顿第二定律是研究过程。动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿定律方便,但要研究加速度就必须用牛顿第二定律。解析:本题的物理过程可分三段:从A到孤匀加速直线运动过程;从B沿圆环运动到C的圆周运动,且注意恰能维持在圆环上做圆周运动,在最高点满足重力全部用来提供向心力;从C回到A的平抛运动。反思:机械能守恒的条件:在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。平抛运动的处理方法:把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。6.机械能的瞬时损失解析:其实质点的运动可分为三个过程:第一过程:质点做平抛运动。设绳即将伸直时,绳与竖直方向的夹角为,如图13所示,则sin0RtV,图13cos98212RRgt,其中gRV430联立解得gRt34,2。六、规律整合1.应用动能定理解题的步骤⑴选取研究对象,明确它的运动过程。⑵分析研究对象的受力情况。明确物体受几个力的作用,哪些力做功,哪些力做正功,哪些力做负功。⑶明确物体的初、末状态,应根据题意确定物体的初、末状态,及初、末状态下的动能。⑶动能定理问题的特征①动力学和运动学的综合题:需要应用牛顿运动定律和运动学公式求解的问题,应用动能定理比较简便。②变力功的求解问题和变力作用的过程问题:变力作用过程是应用牛顿运动定律和运动学公式难以求解的问题,变力的功也是功的计算式cosFSW难以解决的问题,都可以应用动能定理来解决。2.应用机械能守恒定律解题的基本步骤⑴根据题意,选取研究对象。⑵明确研究对象的运动过程,分析研究对象在过程中的受力情况,弄清各力做功的情况,判断是否符合机械能守恒的条件。⑶恰当地选取参考平面,确定研究对象在过程中初状态和末状态的机械能(包括动能和势能)。⑷根据机械能守恒定律列方程,进行求解。2.机械能守恒定律:单个物体和地球(含弹簧)构成的系统机械能守恒定律:在只有重力(或)(和)弹簧的弹力做功的条件下,物体的能量只在动能和重力势能(弹性势能)间发生相互转化,机械能总量不变,机械能守恒定律的存在条件是:(1)只有重力(或)(和)弹簧的弹力做功;(2)除重力(或)(和)弹簧的弹力做功外还受其它力的作用,但其它力做功的代数和等于零。3.如右图所示,质量为m的物体在与水平方向成θ的恒力F作用下以加速度a做匀加速度直线运动,已知物体和地面间的动摩擦因数为μ,物体在地面上运动距离为x的过程中力F做功为()A.μmgxB.θμxμgamtan1C.θμxμgamtan1D.θμμmgxtan15.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车。而动车组是几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,如右图所示,假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。若1节动车加3节拖车编成的动车组的最大速度为120km/h,则9节动车加3节拖车编成的动车组的最大速度为()A.120km/hB.240km/hC.360km/hD.480km/h8.如右图所示,2011年5月27日在国际泳联大奖赛罗斯托克站中,中国选手彭健烽在男子3米板预赛中以431.60分的总成绩排名第一,晋级半决赛。若彭健烽的质量为m,他入水后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,在水中下降高度h的过程中,他的(g为当地重力加速度)()A.重力势能减少了mghB.动能减少了FhC.机械能减少了(F+mg)hD.机械能减少了Fh9.如右图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h。让圆环沿杆滑下,滑到杆的底端时速度为零。则在圆环下滑过程中()A.圆环机械能守恒B.橡皮绳的弹性势能一直增大C.橡皮绳的弹性势能增加了mghD.橡皮绳再次到达原长时圆环动能最大12.(10分)液化石油燃气汽车简称LPG汽车,该燃气汽车的CO排放量比汽油车减少90%以上,碳氢化合物排放减少70%以上,氮氧化合物排放减少35%以上,是目前较为实用的低排放汽车。如下图所示为一辆燃气车,为检验刹车功能,进行了如下实验:在路旁可以答案与解析:3.【答案】B【解析】以物体为研究对象,竖直方向有NsinFmgθF,水平方向有maμFθFNcos,联立解得θμθμgamFsincos,在此过程中F做功θμxμgamθFxWtan1cos,故正确选项为B。4.【答案】B【解析】第1s内物体保持静止状态,在推力方向没有位移产生故做功为0,A选项错误;由图象可知第3s内物体做匀速运动,F=2N,故F=f=2N,由v-t图象知第2s内物体的位移x=21×1×2m=1m,第2s内物体克服摩擦力做的功Wf=fx=2.0J,故B选项正确;第1.5s时物体的速度为1m/s,故推力的功率为3W,C选项错误;第2s内推力F=3N,推力F做功WF=Fx=3.0J,故第2s内推力F做功的平均功率P=WF/t=3W,故D选项错误。5.【答案】C【解析】由kmvP4和vkmP129,解得km/h3603vv,故正确选项为C。6.【答案】AC【解析】由动能定理k00Eμmgx,解得μ=0.20,选项A正确、选项B错误;由20k021mvE,μmg=ma,0=v0-at,联立解得t=5.0s,选项C正确、选项D错误。10.【答案】ACD【解析】小球A、B组成的系统机械能守恒,选项A正确;由于A、B两小球质量不同,选项B错误;当B球到达最低点时,两小球速度最大,由系统机械能守恒232124mvmgRmgR,得最大速度为34gRv,选项C正确;以B球为研究对象,由动能定理得:022142mvmgRW,解得mgRW38,选项D正确。13.【答案】60N0【解析】由动能定理,得0212BmvxμmgF(2分)在B点有RvmmgF2BN(2分)联系解得FN=60N由牛顿第三定律知,滑块在B点对轨道的压力大小为60N(1分)滑块由B点到D点过程由动能定理,得2B2D21212mvmvmgR(2分)在D点有RvmmgF2DN2(2分)联立解得FN2=0由牛顿第三定律知滑块在D点对轨道的压力大小为0(1分)14.【答案】2021mv【解析】设小滑块受平板车的滑动摩擦力大小为f,经时间t后与平板车相对静止,则tvtvL23100(2分)v0=at(2分)f=ma(2分)LfQ31(2分)联立解得2021mvQ(2分)由动
本文标题:动能定理与能量守恒
链接地址:https://www.777doc.com/doc-6053939 .html