您好,欢迎访问三七文档
电力电子技术主讲:王明渝重庆大学电气工程学院1.1电力电子器件概述1.2不可控器件——电力二极管1.3半控型器件——晶闸管1.4典型全控型器件1.5其他新型电力电子器件1.6电力电子器件的驱动1.7电力电子器件的保护1.8电力电子器件的串联和并联使用本章小结电力电子器件第1章电子技术的基础ﻬ介绍各种常用电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题ﻬ简要概述电力电子器件的概念、特点和分类等问题本章主要内容:电力电子器件电力电子电路的基础电子器件:晶体管和集成电路引言电力电子器件第1章电力电子器件的概述1.1.1电力电子器件的概念和特征1.1.2应用电力电子器件的系统组成1.1.3电力电子器件的分类1.1.4本章内容和学习要点1.1电力电子器件的概念和特征电力电子电路的基础——电力电子器件1.概念:电力电子器件(powerelectronicdevice)——可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路(mainpowercircuit)——电气设备或电力系统中,直接承担电能的变换或控制任务的电路。2.广义上分为两类:电真空器件(汞弧整流器、闸流管等电真空器件)半导体器件(采用的主要材料仍然是硅)1.1.13.同处理信息的电子器件相比,电力电子器件的一般特征:①能处理电功率的大小,即承受电压和电流的能力,是最重要的参数。②电力电子器件一般都工作在开关状态。③实用中,电力电子器件往往需要由信息电子电路来控制。④为保证不致于因损耗散发的热量导致器件温度过高而损坏,不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器。电力电子器件的概念和特征1.1.1主要损耗通态损耗:断态损耗:开关损耗:开通损耗:在器件开通的转换过程中产生的损耗关断损耗:在器件关断的转换过程中产生的损耗对某些器件来讲,驱动电路向其注入的功率也是造成器件发热的原因之一通常电力电子器件的断态漏电流极小,因而通态损耗是器件功率损耗的主要成因器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素电力电子器件的概念和特征1.1.1导通时器件上有一定的通态压降阻断时器件上有微小的断态漏电流流过应用电力电子器件的系统组成电力电子系统:由控制电路、驱动电路和以电力电子器件为核心的主电路组成控制电路检测电路驱动电路RL主电路V1V2图1-1电力电子器件在实际应用中的系统组成1.1.2控制电路按系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的通或断,来完成整个系统的功能。有的电力电子系统中,还需要有检测电路。广义上往往其和驱动电路等主电路之外的电路都归为控制电路,从而粗略地说电力电子系统是由主电路和控制电路组成的。主电路中的电压和电流一般都较大,而控制电路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路与主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般需要进行电气隔离,而通过其它手段如光、磁等来传递信号应用电力电子器件的系统组成1.1.2由于主电路中往往有电压和电流的过冲,而电力电子器件一般比主电路中普通的元器件要昂贵,但承受过电压和过电流的能力却要差一些,因此,在主电路和控制电路中附加一些保护电路,以保证电力电子器件和整个电力电子系统正常可靠运行,也往往是非常必要的。器件一般有三个端子(或称极或管角),其中两个联结在主电路中,而第三端被称为控制端(或控制极)。器件通断是通过在其控制端和一个主电路端子之间加一定的信号来控制的,这个主电路端子是驱动电路和主电路的公共端,一般是主电路电流流出器件的端子。应用电力电子器件的系统组成1.1.2电力电子器件的分类按照器件能够被控制电路信号所控制的程度,分为以下三类:1)半控型器件1.1.3绝缘栅双极晶体管(Insulated-GateBipolarTransistor——IGBT)电力场效应晶体管(电力MOSFET)门极可关断晶闸管(GTO)3)不可控器件电力二极管(PowerDiode)只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的。通过控制信号既可控制其导通又可控制其关断,又称自关断器件。晶闸管(Thyristor)及其大部分派生器件器件的关断由其在主电路中承受的电压和电流决定2)全控型器件通过控制信号可以控制其导通而不能控制其关断。不能用控制信号来控制其通断,因此也就不需要驱动电路。按照驱动电路加在器件控制端和公共端之间信号的性质,分为两类:按照器件内部电子和空穴两种载流子参与导电的情况分为三类:1)电流驱动型1)单极型器件电力电子器件的分类1.1.32)电压驱动型通过从控制端注入或者抽出电流来实现导通或者关断的控制仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制2)双极型器件3)复合型器件由一种载流子参与导电的器件由电子和空穴两种载流子参与导电的器件由单极型器件和双极型器件集成混合而成的器件本章内容和学习要点本章内容:–介绍各种器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。–然后集中讲述电力电子器件的驱动、保护和串、并联使用这三个问题。学习要点:–最重要的是掌握其基本特性。–掌握电力电子器件的参数和特性曲线的使用方法,这是在实际中正确应用电力电子器件的两个基本要求。–由于电力电子电路的工作特点和具体情况的不同,可能会对与电力电子器件用于同一主电路的其它电路元件,如变压器、电感、电容、电阻等,有不同于普通电路的要求。1.1.4不可控器件—电力二极管1.2.1PN结与电力二极管的工作原理1.2.2电力二极管的基本特性1.2.3电力二极管的主要参数1.2.4电力二极管的主要类型1.2PowerDiode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位。不可控器件—电力二极管1.2PN结与电力二极管的工作原理基本结构和工作原理与信息电子电路中的二极管一样。以半导体PN结为基础。由一个面积较大的PN结和两端引线以及封装组成的从外形上看,主要有螺栓型和平板型两种封装。AKAKa)IKAPNJb)c)图1-2电力二极管的外形、结构和电气图形符号a)外形b)结构c)电气图形符号1.2.1N型半导体和P型半导体结合后构成PN结。图1-3PN结的形成•交界处电子和空穴的浓度差别,造成了各区的多子向另一区的扩散运动,到对方区内成为少子,在界面两侧分别留下了带正、负电荷但不能任意移动的杂质离子。这些不能移动的正、负电荷称为空间电荷。PN结与电力二极管的工作原理1.2.1-。-。-。-。-。-。-。-。-。-。-。-。-。-。-。+·+·+·+·+·+·+·+·+·+·+·+·+·+·+·+-+-+-+-+-空间电荷区P型区N型区内电场•空间电荷建立的电场被称为内电场或自建电场,其方向是阻止扩散运动的,另一方面又吸引对方区内的少子(对本区而言则为多子)向本区运动,即漂移运动。•扩散运动和漂移运动最终达到动态平衡,正、负空间电荷量达到稳定值,形成了一个稳定的由空间电荷构成的范围,被称为空间电荷区,按所强调的角度不同也被称为耗尽层、阻挡层或势垒区。PN结的正向导通状态电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态。PN结的反向截止状态PN结的单向导电性。二极管的基本原理就在于PN结的单向导电性这一主要特征。PN结的反向击穿有雪崩击穿和齐纳击穿两种形式,可能导致热击穿。PN结的电容效应:PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。结电容按其产生机制和作用的差别分为势垒电容CB和扩散电容CD。PN结与电力二极管的工作原理1.2.1势垒电容只在外加电压变化时才起作用。外加电压频率越高,势垒电容作用越明显。势垒电容的大小与PN结截面积成正比,与阻挡层厚度成反比。PN结与电力二极管的工作原理1.2.1扩散电容仅在正向偏置时起作用。在正向偏置时,当正向电压较低时,势垒电容为主;正向电压较高时,扩散电容为结电容主要成分。结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作,应用时应加以注意。造成电力二极管和信息电子电路中的普通二极管区别的一些因素:•正向导通时要流过很大的电流,其电流密度较大,因而额外载流子的注入水平较高,电导调制效应不能忽略。•引线和焊接电阻的压降等都有明显的影响。•承受的电流变化率di/dt较大,因而其引线和器件自身的电感效应也会有较大影响。•为了提高反向耐压,其掺杂浓度低也造成正向压降较大。PN结与电力二极管的工作原理1.2.1电力二极管的基本特性1.静态特性主要指其伏安特性IOIFUTOUFU图1-4电力二极管的伏安特性1.2.2当电力二极管承受的正向电压大到一定值(门槛电压UTO),正向电流才开始明显增加,处于稳定导通状态。与正向电流IF对应的电力二极管两端的电压UF即为其正向电压降。当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。2.动态特性电力二极管的基本特性1.2.2动态特性关断过程:开关特性•须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。•在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。•反映通态和断态之间的转换过程•因结电容的存在,三种状态之间的转换必然有一个过渡过程,此过程中的电压—电流特性是随时间变化的。开通过程:•电力二极管的正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。这一动态过程时间被称为正向恢复时间tfr。•电导调制效应起作用需一定的时间来储存大量少子,达到稳态导通前管压降较大。•正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高。2.动态特性(续)电力二极管的基本特性1.2.2延迟时间:td=t1-t0,电流下降时间:tf=t2-t1反向恢复时间:trr=td+tf恢复特性的软度:下降时间与延迟时间的比值tf/td,或称恢复系数,用Sr表示b)UFPuiiFuFtfrt02Va)IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt图1-5电力二极管的动态过程波形a)正向偏置转换为反向偏置b)零偏置转换为正向偏置电力二极管的基本特性1.2.2电力二极管的主要参数1.正向平均电流IF(AV)额定电流——在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。正向平均电流是按照电流的发热效应来定义的,因此使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。当用在频率较高的场合时,开关损耗造成的发热往往不能忽略。当采用反向漏电流较大的电力二极管时,其断态损耗造成的发热效应也不小。1.2.32.正向压降UF指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降有时参数表中也给出在指定温度下流过某一瞬态正向大电流时器件的最大瞬时正向压降3.反向重复峰值电压URRM指对电力二极管所能重复施加的反向最高峰值电压通常是其雪崩击穿电压UB的2/3使用时,往往按照电路中电力二极管可能承受的反向最高峰值电压的两倍来选定电力二极管的主要参数1.2.34.最高工作结温TJM结温是指管芯PN结的平均温度,用TJ表示。最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125~175C范围之内。5.反向恢复时间trrtrr=td+tf,关断过程中,电流降到零起到恢复反响阻断能力止的时间。6.浪涌电流IFSM指电力二极管所能承受最大的连续一个或几个工频周期的过电流。电力二极管的主要参数1.2.3电力二极管的主要类型按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢
本文标题:ch1电力电子1
链接地址:https://www.777doc.com/doc-60615 .html