您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 压力容器常用的抗HIC钢的焊接
压力容器用抗HIC钢的焊接(jdw‐fool@163.com) 2010年11月于大连中集(dljdw) 1/7压力容器用抗HIC钢的焊接一、硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。2.石油工业中的来源油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。3.石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。注意:干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。二、湿硫化氢化境的定义1.国际上,通常按照美国腐蚀工程师协会(NACE)MR0175的规定,将:⑴酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa;⑵酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。定义为湿硫化氢环境。2.国内将“在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。三、湿硫化氢环境中的材料开裂类型:氢鼓泡(HB)、氢致开裂(HIC)、硫化物应力腐蚀开裂(SSCC)、应力导向氢致开裂(SOHIC)。(1)氢鼓泡(HB)压力容器用抗HIC钢的焊接(jdw‐fool@163.com) 2010年11月于大连中集(dljdw) 2/7腐蚀过程中析出的氢原子向钢中扩散,在钢材的非金属夹杂物、分层和其他不连续处易聚集形成分子氢,由于氢分子较大难以从钢的组织内部逸出,从而形成巨大内压导致其周围组织屈服,形成表面层下的平面孔穴结构称为氢鼓泡,其分布平行于钢板表面。它的发生无需外加应力,与材料中的夹杂物等缺陷密切相关。(2)氢致开裂(HIC)在氢气压力的作用下,不同层面上的相邻氢鼓泡裂纹相互连接,形成阶梯状特征的内部裂纹称为氢致开裂,裂纹有时也可扩展到金属表面。HIC的发生也无需外加应力,一般与钢中高密度的大平面夹杂物或合金元素在钢中偏析产生的不规则微观组织有关。(3)硫化物应力腐蚀开裂(SSCC)湿H2S环境中腐蚀产生的氢原子渗入钢的内部固溶于晶格中,使钢的脆性增加,在外加拉应力或残余应力作用下形成的开裂,叫做硫化物应力腐蚀开裂。工程上有时也把受拉应力的钢及合金在湿H2S及其它硫化物腐蚀环境中产生的脆性开裂统称为硫化物应力腐蚀开裂。SSCC通常发生在中高强度钢中或焊缝及其热影响区等硬度较高的区域。(4)应力导向氢致开裂(SOHIC)在应力引导下,夹杂物或缺陷处因氢聚集而形成的小裂纹叠加,沿着垂直于应力的方向(即钢板的壁厚方向)发展导致的开裂称为应力导向氢致开裂。其典型特征是裂纹沿“之”字形扩展。有人认为,它也是应压力容器用抗HIC钢的焊接(jdw‐fool@163.com) 2010年11月于大连中集(dljdw) 3/7力腐蚀开裂(SCC)的一种特殊形式。SOHIC也常发生在焊缝热影响区及其它高应力集中区,与通常所说的SSCC不同的是SOHIC对钢中的夹杂物比较敏感。应力集中常为裂纹状缺陷或应力腐蚀裂纹所引起,据报道,在多个开裂案例中都曾观测到SSCC和SOHIC并存的情况。四、硫化氢应力腐蚀和氢致开裂的危害硫化氢应力腐蚀和氢致开裂是一种低应力破坏,甚至在很低的拉应力下都可能发生开裂。一般说来,随着钢材强度(硬度)的提高,硫化氢应力腐蚀开裂越容易发生,甚至在百分之几屈服强度时也会发生开裂。硫化物应力腐蚀和氢致开裂均属于延迟破坏,开裂可能在钢材接触H2S后很短时间内(几小时、几天)发生,也可能在数周、数月或几年后发生,但无论破坏发生迟早,往往事先无明显预兆。硫化氢应力腐蚀和氢致开裂对设备的安全运行构成了极大危害。五、硫化氢腐蚀的影响因素1.材料因素材料因素中影响钢材抗硫化氢腐蚀性能的主要有显微组织、强度、硬度以及合金元素等。○显微组织对应力腐蚀开裂敏感性按下述顺序升高:铁素体中球状碳化物组织完全淬火加回火组织正火加回火组织正火组织淬火后未回火组织。○强度随材料屈服强度的升高,临界应力和屈服强度的比值下降,应力腐蚀敏感性增加。○硬度材料的硬度提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在材料硬度大于HRC22的情况下。○合金元素有害元素:C、Ni、Mn、S、P;有利元素:Cr,Ti碳(C):增加钢的含碳量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。压力容器用抗HIC钢的焊接(jdw‐fool@163.com) 2010年11月于大连中集(dljdw) 4/7镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时,也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬0.5%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。钛(Ti):钛对低合金钢应力腐蚀开裂敏感性的影响也类似于钼。试验证明,在硫化氢介质中,含碳量低的钢(0.04%)加入钛(0.09%Ti),对其稳定性有一定的改善作用。锰(Mn):锰元素是一种易偏析的元素,研究锰在硫化物腐蚀开裂过程的作用十分重要。当偏析区Mn、C含量一旦达到一定比例时,在钢材生产和设备焊接过程中,产生出马氏体/贝氏体高强度、低韧性的显微组织,表现出很高的硬度,对设备抗SSCC是不利的。对于碳钢一般限制锰含量小于1.6%。少量的Mn能将硫变为硫化物并以硫化物形式排出,同时钢在脱氧时,使用少量的锰后,也会形成良好的脱氧组织而起积极作用。在石油工业中是制造油管和套管大都采用含锰量较高的钢,如我国的36Mn2Si钢。(提高硬度)硫(S):硫对钢的应力腐蚀开裂稳定性是有害的。随着硫含量的增加,钢的稳定性急剧恶化,主要原因是硫化物夹杂是氢的积聚点,使金属形成有缺陷的组织。同时硫也是吸附氢的促进剂。因此,非金属夹杂物尤其是硫化物含量的降低、分散化以及球化均可以提高钢(特别是高强度钢)在引起金属增氢介质中的稳定性。磷(P):除了形成可引起钢红脆(热脆)和塑性降低的易熔共晶夹杂物外,还对氢原子重新组合过程(Had+Had→H2↑)起抑制作用,使金属增氢效果增加,从而也就会降低钢在酸性的、含硫化氢介质中的稳定性。○冷加工经冷轧制、冷锻、冷弯或其他制造工艺以及机械咬伤等产生的冷变形,不仅使冷变形区的硬度增大,而且还产生一个很大的残余应力,有时可高达钢材的屈服强度,从而导致对SSCC敏感。一般说来钢材随着冷加工量的增加,硬度增大,SSCC的敏感性增强。2.环境因素的影响○硫化氢浓度从对钢材阳极过程产物的形成来看,硫化氢浓度越高,钢材的失重速度也越快。对应力腐蚀开裂的影响高强度钢即使在溶液中硫化氢浓度很低(体积分数为1×10-3mL/L)的情况下仍能引起破坏,硫化氢体积分数为5×10-2~6×10-1mL/L时,能在很短的时间内引起高强度钢的硫化物应力腐蚀破坏,但这时硫化氢的浓度对高强度钢的破坏时间已经没有明显的影响了。硫化物应力腐蚀的下限浓度值与使用材料的强度(硬度)有关。碳钢在硫化氢体积分数小于5×10-2mL/L时破坏时间都较长。NACEMR0175标准认为发生硫化氢应力腐蚀的极限分压为0.34×10-3MPa(水溶液中H2S浓度约20mg/L),低于此分压不发生硫化氢应力腐蚀开裂。○pH值对硫化物应力腐蚀的影响:随pH的增加,钢材发生硫化物应力腐蚀的敏感性下降pH≤6时,硫化物应力腐蚀很严重;6<pH≤9时,硫化物应力腐蚀敏感性开始显著下降,但达到断裂所需的时间仍然很短;pH>9时,就很少发生硫化物应力腐蚀破坏。○温度在一定温度范围内,温度升高,硫化物应力腐蚀破裂倾向减小。(温度升高硫化溶解度减小)在22℃左右,硫化物应力腐蚀敏感性最大。温度大于22℃后,温度升高硫化物应力腐蚀敏感性明显降低。○流速流体在某特定的流速下,碳钢和低合金钢在含H2S流体中的腐蚀速率,通常是随着时间的增长而逐渐下降,平衡后的腐蚀速率均很低。压力容器用抗HIC钢的焊接(jdw‐fool@163.com) 2010年11月于大连中集(dljdw) 5/7如果流体流速较高或处于湍流状态时,由于钢铁表面上的硫化铁腐蚀产物膜受到流体的冲刷而被破坏或粘附不牢固,钢铁将一直以初始的高速腐蚀,从而使设备、管线、构件很快受到腐蚀破坏。因此,要控制流速的上限,以把冲刷腐蚀降到最小。通常规定阀门的气体流速低于15m/s。相反,如果气体流速太低,可造成管线、设备低部集液,而发生因水线腐蚀、垢下腐蚀等导致的局部腐蚀破坏。因此,通常规定气体的流速应大于3m/s。○氯离子在酸性油气田水中,带负电荷的氯离子,基于电价平衡,它总是争先吸附到钢铁的表面,因此,氯离子的存在往往会阻碍保护性的硫化铁膜在钢铁表面的形成。但氯离子可以通过钢铁表面硫化铁膜的细孔和缺陷渗入其膜内,使膜发生显微开裂,于是形成孔蚀核。由于氯离子的不断移入,在闭塞电池的作用下,加速了孔蚀破坏。在酸性天然气气井中与矿化水接触的油套管腐蚀严重,穿孔速率快,与氯离子的作用有着十分密切的关系。六、对抗湿硫化氢腐蚀钢的基本要求:1.抗湿硫化氢腐蚀钢板应真空脱气2.应符合下列热处理之一:a)热轧b)退火c)正火d)正火+回火e)正火、奥氏体化、淬火及回火f)奥氏体化、淬火及回火一般都采用正火或淬火+回火热处理。为了提高组织的稳定性,通常回火温度应≥600℃。3.应进行100%UT检测,SA-578(扫查方式S1),合格级别C级。4.对碳钢板的化学成分要求一般,抗HIC钢要求严格控制S,P含量,并要控制Mn含量,为改善钢材性能,可以添加一些微量元素。CMnSiSPNbVNb+VCE(IIW)按钢材标准按钢材标准按钢材标准≤0.003≤0.012≤0.015≤0.015≤0.020≤0.43制造抗HIC钢中使用了大量的洁净钢技术:如低碳微合金化技术,Ca处理技术(改变硫化物形态,使其球化)和控轧控冷技术。采用近代的洁净钢技术冶炼的抗HIC钢具有更好的抗硫化氢腐蚀能力,如德国DILLINGER钢厂的DICREST系列,法国INDUSTEEL的CARELSO系列,JFE公司的AH系列。5.对碳钢锻件的化学成分要求CMnSiS+PCE(IIW)按钢材标准按钢材标准按钢材标准≤0.015≤0.45碳钢锻件应真空脱气,并进行正火或淬火+回火处理。并按照SA-388进行100%UT检测。七、压力容器常用的抗HIC碳钢:国家标准钢号GB6654-1996现GB713-200820R(HIC)现Q245R(HIC)16MnR(HIC)现Q345R(HIC)中国GBJB4726-200016Mn(HIC)A285A285Gr.A(HIC)A285Gr.B(HIC)A285Gr.C(HIC)美国ASTMA442A442Gr.55(HIC)A4
本文标题:压力容器常用的抗HIC钢的焊接
链接地址:https://www.777doc.com/doc-6067516 .html