您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 经典机器学习算法优缺点比较
经典机器学习算法优缺点比较算法优点缺点决策树计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;容易过拟合(后续出现了随机森林,减小了过拟合现象);朴素贝叶斯对小规模的数据表现很好,适合多分类任务,适合增量式训练。对输入数据的表达形式很敏感。对关联性强的特征表现不好Logistic回归:实现简单;分类时计算量非常小,速度很快,存储资源低;容易欠拟合,一般准确度不太高;只能处理两分类问题,且必须线性可分;KNN可用于非线性分类;训练时间小;准确度高,对数据没有假设,对outlier不敏感;计算量大;样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);需要大量的内存;SvmLibsvm/liblinear低泛化误差;容易解释;计算复杂度较低;对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类boosting低泛化误差;容易实现,分类准确率较高,没有太多参数可以调;对outlier比较敏感;GDBT(MART)迭代决策树GBDT几乎可用于所有回归问题(线性/非线性);亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例);可以解决过拟合问题;
本文标题:经典机器学习算法优缺点比较
链接地址:https://www.777doc.com/doc-6075992 .html