您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 2017年贵州省黔西南州中考数学试卷及解析
第1页(共23页)2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017B.2017C.﹣D.2.(4分)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个5.(4分)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.=x﹣3C.=a+1D.x6÷x2=x36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.B.C.D.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠CB.AD∥BCC.∠A=∠BD.对角线互相平分第2页(共23页)8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71B.78C.85D.8910.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4B.4C.﹣2D.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2=.12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的第3页(共23页)训练量)此处“两千万”用科学记数法表示为(精确到百万位).13.(3分)不等式组的解集是.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=度.17.(3分)函数y=的自变量x的取值范围是.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.第4页(共23页)四、(本大题12分)22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?第5页(共23页)(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:第6页(共23页)(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.八、(本大题16分)26.(16分)如图1,抛物线y=ax2+bx+,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM=S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).第7页(共23页)2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)【考点】P3:轴对称图形.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(4分)【考点】W7:方差;W1:算术平均数.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(4分)第8页(共23页)【考点】U1:简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(4分)【考点】4C:完全平方公式;48:同底数幂的除法;66:约分;6F:负整数指数幂.【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A、(a﹣b)2=(b﹣a)2,故错误;B、正确;C、不能再化简,故错误;D、x6÷x2=x4,故错误;故选:B.【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(4分)【考点】X4:概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是=,故选:B.【点评】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(4分)第9页(共23页)【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(4分)【考点】M2:垂径定理.【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)第10页(共23页)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(4分)【考点】38:规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(4分)【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=(x>0)上的一个动点,第11页(共23页)∴可设A(x,),∴OC=x,AC=,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴===,∴OD=2AC=,BD=2OC=2x,∴B(﹣,2x),∵点B反比例函数y=图象上,∴k=﹣•2x=﹣4,故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A点坐标表示出B点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(3分)【考点】1E:有理数的乘方.【分析】本题考查有理数的乘方运算,(﹣)2表示2个(﹣)的乘积.【解答】解:(﹣)2=.故答案为:.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负第12页(共23页)数,负数的偶数次幂是正数.12.(3分)【考点】1L:科学记数法与有效数字.菁优网版权所有【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,
本文标题:2017年贵州省黔西南州中考数学试卷及解析
链接地址:https://www.777doc.com/doc-6092475 .html