您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 2017年上海市嘉定区高考数学二模试卷含答案解析
2017年上海市嘉定区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.2.设i为虚数单位,复数,则|z|=.3.设f﹣1(x)为的反函数,则f﹣1(1)=.4.=.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是.6.设等差数列{an}的前n项和为Sn,若=,则=.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.9.若,则满足f(x)>0的x的取值范围是.10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.11.设等差数列{an}的各项都是正数,前n项和为Sn,公差为d.若数列也是公差为d的等差数列,则{an}的通项公式为an=.12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1D.若x2﹣3x+2≠0,则x≠114.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A.B.C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1]B.[﹣2,0]C.[﹣1,1]D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.21.给定数列{an},若满足a1=a(a>0且a≠1),对于任意的n,m∈N*,都有an+m=an•am,则称数列{an}为指数数列.(1)已知数列{an},{bn}的通项公式分别为,,试判断{an},{bn}是不是指数数列(需说明理由);(2)若数列{an}满足:a1=2,a2=4,an+2=3an+1﹣2an,证明:{an}是指数数列;(3)若数列{an}是指数数列,(t∈N*),证明:数列{an}中任意三项都不能构成等差数列.2017年上海市嘉定区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为2.设i为虚数单位,复数,则|z|=1.【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.3.设f﹣1(x)为的反函数,则f﹣1(1)=1.【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.4.=3.【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解:===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R,进而解母线与底面所成角,然后求解母线与轴所成角即可.【解答】解:设圆锥的底面半径为R,母线长为l,则:其底面积:S底面积=πR2,其侧面积:S侧面积=2πRl=πRl,∵圆锥的侧面积是其底面积的2倍,∴l=2R,故该圆锥的母线与底面所成的角θ有,cosθ==,∴θ=60°,母线与轴所成角的大小是:30°.故答案为:30°.6.设等差数列{an}的前n项和为Sn,若=,则=.【考点】85:等差数列的前n项和.【分析】=,可得3(a1+4d)=5(a1+2d),化为:a1=d.再利用等差数列的求和公式即可得出.【解答】解:∵=,∴3(a1+4d)=5(a1+2d),化为:a1=d.则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是1.【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为和.则P(B)=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P(A)=1﹣P(B)=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{an}的各项都是正数,前n项和为Sn,公差为d.若数列也是公差为d的等差数列,则{an}的通项公式为an=.【考点】84:等差数列的通项公式.【分析】由题意可得:Sn=na1+d.an>0.=+(n﹣1)d,化简n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,解出即可得出.【解答】解:由题意可得:Sn=na1+d.an>0.=+(n﹣1)d,可得:Sn=a1+(n﹣1)2d2+2(n﹣1)d.∴na1+d=a1+(n﹣1)2d2+2(n﹣1)d.n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,可得:a1=d2+2d﹣d,a1=2d2+2d﹣d.解得a1=,d=.∴an=+(n﹣1)=.故答案为:.12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简Cxn,求出Cx10的表达式,再利用函数的单调性求出Cx10的值域.【解答】解:当x∈[,2)时,[x]=1,∴f(x)=C=,当x∈[,2)时,f(x)是减函数,∴f(x)∈(5,);当x∈[2,3)时,[x]=2,∴f(x)=C=,当x∈[2,3)时,f(x)是减函数,∴f(x)∈(15,45];∴当时,函数f(x)=C的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1D.若x2﹣3x+2≠0,则x≠1【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x2﹣3x+2≠0,则x≠1故选:D14.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A.B.C.D.【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC1D1上的投影,即可得出结论.【解答】解:A1在面DCC1D1上的投影为点D1,E在面DCC1D1的投影为点G,F在面DCC1D1上的投影为点C,H在面DCC1D1上的投影为点N,因此侧视图为选项C的图形.故选C15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.【考点】9V:向量在几何中的应用.【分析】以A为原点,以BC
本文标题:2017年上海市嘉定区高考数学二模试卷含答案解析
链接地址:https://www.777doc.com/doc-6099529 .html