您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 典型例题31-数学归纳法解题
用心爱心专心1高考数学典型例题详解数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=12)1(nn(an2+bn+c).●案例探究[例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.证明:(1)设a、b、c为等比数列,a=qb,c=bq(q>0且q≠1)∴an+cn=nnqb+bnqn=bn(nq1+qn)>2bn(2)设a、b、c为等差数列,则2b=a+c猜想2nnca>(2ca)n(n≥2且n∈N*)下面用数学归纳法证明:①当n=2时,由2(a2+c2)>(a+c)2,∴222)2(2caca②设n=k时成立,即,)2(2kkkcaca则当n=k+1时,41211kkca(ak+1+ck+1+ak+1+ck+1)用心爱心专心2>41(ak+1+ck+1+ak·c+ck·a)=41(ak+ck)(a+c)>(2ca)k·(2ca)=(2ca)k+1[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-21成等比数列.(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{an}所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,Sk=-321k应舍去,这一点往往容易被忽视.技巧与方法:求通项可证明{nS1}是以{11S}为首项,21为公差的等差数列,进而求得通项公式.解:∵an,Sn,Sn-21成等比数列,∴Sn2=an·(Sn-21)(n≥2)(*)(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-32由a1=1,a2=-32,S3=31+a3代入(*)式得:a3=-152同理可得:a4=-352,由此可推出:an=)1()12)(32(2)1(1nnnn(2)①当n=1,2,3,4时,由(*)知猜想成立.②假设n=k(k≥2)时,ak=-)12)(32(2kk成立故Sk2=-)12)(32(2kk·(Sk-21)∴(2k-3)(2k-1)Sk2+2Sk-1=0∴Sk=321,121kSkk(舍)由Sk+12=ak+1·(Sk+1-21),得(Sk+ak+1)2=ak+1(ak+1+Sk-21)用心爱心专心3.1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即knkkaakaakaakkkkkkk由①②知,an=)2()12)(32(2)1(1nnnn对一切n∈N成立.(3)由(2)得数列前n项和Sn=121n,∴S=limnSn=0.●锦囊妙记(1)数学归纳法的基本形式设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练一、选择题1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证()A.n=1B.n=2C.n=3D.n=4用心爱心专心4二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222…则可归纳出_________.4.(★★★★)已知a1=21,an+1=33nnaa,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.三、解答题5.(★★★★)用数学归纳法证明412n+3n+2能被13整除,其中n∈N*.6.(★★★★)若n为大于1的自然数,求证:2413212111nnn.7.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+nb1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与31logabn+1的大小,并证明你的结论.8.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,又如果limnS2n<3,求q的取值范围.参考答案难点磁场解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有用心爱心专心5101133970)24(2122)(614cbacbacbacba于是,对n=1,2,3下面等式成立1·22+2·32+…+n(n+1)2=)10113(12)1(2nnnn记Sn=1·22+2·32+…+n(n+1)2设n=k时上式成立,即Sk=12)1(kk(3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=2)1(kk(k+2)(3k+5)+(k+1)(k+2)2=12)2)(1(kk(3k2+5k+12k+24)=12)2)(1(kk[3(k+1)2+11(k+1)+10]也就是说,等式对n=k+1也成立.综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.歼灭难点训练一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n=1,2时,由上得证,设n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1(2k+7)·3k=(6k+27)·3k-(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2)f(k+1)能被36整除∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C2.解析:由题意知n≥3,∴应验证n=3.答案:C用心爱心专心6二、3.解析:11112)11(112321122即12122)12(1)11(11,35312112222即112)1(131211222nnn归纳为(n∈N*)112)1(131211:222nnn答案(n∈N*)53,553103,54393,5338333,5237332121333:.454223112naaaaaaaaan猜想同理解析73:答案、83、93、10353n三、5.证明:(1)当n=1时,42×1+1+31+2=91能被13整除(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除∴当n=k+1时也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.6.证明:(1)当n=2时,2413127221121(2)假设当n=k时成立,即2413212111kkk2413)1)(12(21241322112124131122112124131111221121213121,1kkkkkkkkkkkkkkkn时则当用心爱心专心77.(1)解:设数列{bn}的公差为d,由题意得311452)110(10101111dbdbb,∴bn=3n-2(2)证明:由bn=3n-2知Sn=loga(1+1)+loga(1+41)+…+loga(1+231n)=loga[(1+1)(1+41)…(1+231n)]而31logabn+1=loga313n,于是,比较Sn与31logabn+1比较(1+1)(1+41)…(1+231n)与313n的大小.取n=1,有(1+1)=33311348取n=2,有(1+1)(1+33312378)41推测:(1+1)(1+41)…(1+231n)>313n(*)①当n=1时,已验证(*)式成立.②假设n=k(k≥1)时(*)式成立,即(1+1)(1+41)…(1+231k)>313k则当n=k+1时,)1311(13)2)1(311)(2311()411)(11(3kkkk3131323kkk333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(kkkkkkkkkkkkkkk31)1(3)1311)(2311()411)(11(kkk从而,即当n=k+1时,(*)式成立由①②知,(*)式对任意正整数n都成立.于是,当a>1时,Sn>31logabn+1,当0<a<1时,Sn<31logabn+18.解:∵a1·a2=-q,a1=2,a2≠0,∴q≠0,a2=-29,用心爱心专心8∵an·an+1=-qn,an+1·an+2=-qn+1两式相除,得qaann12,即an+2=q·an于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-21qn(n=1,2,3,…)综合①②,猜想通项公式为an=)(221)(1221NNkknqkknqkk时时下证:(1)当n=1,2时猜想成立(2)设n=2k-1时,a2k-1=2·qk-1则n=2k+1时,由于a2k+1=q·a2k-1∴a2k+1=2·qk即n=2k-1成立.可推知n=2k+1也成立.设n=2k时,a2k=-21qk,则n=2k+2时,由于a2k+2=q·a2k,所以a2k+2=-21qk+1,这说明n=2k成立,可推知n=2k+2也成立.综上所述,对一切自然数n,猜想都成立.这样所求通项公式为an=)(221)(1221NNkknqkknqkk时当时当S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-21(q+q2+…+qn))24)(11()1()1(211)1(2qqqqqqqqnnn由于|q|<1,∴nnnnSq2lim,0lim故=)24)(11(qqqn依题意知)1(24qq<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<52
本文标题:典型例题31-数学归纳法解题
链接地址:https://www.777doc.com/doc-6118891 .html