您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 小学生数学必背公式定理
小学生数学必背公式定理一、基本要求:小学一年级九九乘法口诀表。学会基础加减乘。小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。小学四年级线角自然数整数,素因数梯形对称,分数小数计算。小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。小学六年级比例百分比概率,圆扇圆柱及圆锥一、单位换算:二、单位换算1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升4、重量单位换算1吨=1000千克1千克=1000克1千克=1公斤5、人民币单位换算1元=10角1角=10分1元=100分6、时间单位换算1世纪=100年1年=12月1日=24小时1时=60分1分=60秒1时=3600秒大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天三、图形的面积体积公式:1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×212、长方体的体积=长×宽×高V=abh13、正方体的表面积=棱长×棱长×6S=6a14、正方体的体积=棱长×棱长×棱长V=a.a.a=a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch17圆柱的体积=底面积×高V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h18、圆锥的体积=底面积×高÷3V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3四、基本定义与运算定律数与数字的区别:数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。数是由数字和数位组成。0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。00是最小的自然数,是一个偶数。是任何自然数(0除外)的倍数。0不能作除数。自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。简单说就是大于等于零的整数。整数:自然数都是整数,整数不都是自然数。小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。纯小数:小数的整数部分为零的小数,叫做纯小数。有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。分数:表示把“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。真分数:分子比分母小的分数叫真分数。假分数:分子比分母大,或者分子等于分母的分数叫做假分数。带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。十进制:十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。加法:把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。减法:已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。乘法:求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。a+b=b+a加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。a+b+c=(a+b)+c=a+(b+c)减法性质:在减法中,被减数、减数同时加上或者减去一个数,差不变。a-b=(a+c)-(b+c)ab=(a-c)-(b-c)在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。a–b-c=a-(b+c)乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b=b×a乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c=a×(b×c)乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c乘法的其他运算性质:一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。a×b=(a×c)×(b÷c)除法的运算性质:商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。a÷b=(a×c)÷(b×c)a÷b=(a÷c)÷(b÷c)一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。a÷b÷c=a÷(b×c)乘法的意义:求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?求一个数的若干倍是多少?例如:27×0.3或者的意义:求27的十分之三是多少?除法的意义:一个数里有几个除数。简称“包含除法”。例如,24÷3表示24里面包含有几个3。一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍?把一个数平均分成若干份,每份是多少?简称“等分除法”。例如:24÷3,表示把24平均分成3份,每份是多少?已知一个数的几分之几是多少,求这个数。例如:,表示:已知一个数的三分之一是24,求这个数。整除与除尽整除:甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。整除可以说是除尽,但除尽就不能说一定叫整除。例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。约数和倍数:当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。奇数与偶数:凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。质数(素数)与合数:一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。由于1的约数只有1个,所以1既不是质数,也不是合数。公约数:几个数公有的约数,叫做公约数。它的个数是有限的,既有最大的,也有最小的。互质数:两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。质数与互质数:两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。质因数:把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。分解质因数:把一个合数分解成几个质数相同的形式,就叫做分解质因数。公倍数:几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。最大公约数:几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。最小公倍数:几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。能被2整除的判断方法:一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。能被5整除的判断方法:一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。能被3整除的判断方法:一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。分数单位:分子为1分母不为零的真分数,叫这个分数的分数单位(带分数要化成假分数)。分数化有限小数的判断方法:一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。分数的基本性质:一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。分数的通分、约分通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。分数乘整数:用分数的分子和整数相乘的积作分子,分母不变。分数乘分数:用分子相乘的积作分子,分母相乘的积作为分母。分数除以整数(0除外):等于分数乘以这个整数的倒数。百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特征是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。百分率:两个相同量的比的比值,用百分数和
本文标题:小学生数学必背公式定理
链接地址:https://www.777doc.com/doc-6126625 .html