您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2017年吉林省长春市中考数学试卷(含答案解析版)
第1页(共15页)2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.1.(3分)3的相反数是()A.﹣3B.﹣13C.13D.32.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105C.6.7×107D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组{𝑥−1≤02𝑥−5<1的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2bB.3a+4bC.6a+2bD.6a+4b第2页(共15页)7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29°B.32°C.42°D.58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=𝑘𝑥(k>0,x>0)的图象经过点C,则k的值为()A.√33B.√32C.2√33D.√3二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3=.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长第3页(共15页)为半径作圆弧,交BC于点D,则𝐴𝐷̂的长为.(结果保留π)13.(3分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.第4页(共15页)17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.第5页(共15页)21.(8分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.第6页(共15页)23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.第7页(共15页)24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y={−𝑥+1(𝑥<0)𝑥−1(𝑥≥0).(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣12.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣12的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣12,1),(92,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.第8页(共15页)2017年吉林省长春市中考数学试卷一、选择题:1.A.2.C.3.D4.C.5.C.6.A.7.B.8.D.二、填空题9.√6.10.4.11.6.12.8𝜋9.13.10.14.(﹣1,﹣2).三、解答题15.解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.解:列表如下:abca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P=39=13.17.解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴AC=AB•cos∠BAC=12×0.857≈10.3(米).即大厅的距离AC的长约为10.3米.18.解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:750𝑥﹣9003𝑥=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,第9页(共15页)在△BCE和△DCF中,{𝐵𝐶=𝐶𝐷∠𝐵𝐶𝐸=∠𝐷𝐶𝐹𝐶𝐸=𝐶𝐹,∴△BCE≌△DCF,∴∠F=∠E=86°.20.解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12AC,同理HG∥AC,HG=12AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12AC,同【探究】的方法得,FG=12BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,第10页(共15页)∴FG∥BD,FG=12BD,∴△CFG∽△CBD,∴𝑆△𝐶𝐹𝐺𝑆△𝐵𝐶𝐷=14,∴S△BCD=4S△CFG,同理:S△ABD=4S△AEH,∵四边形ABCD面积为5,∴S△BCD+S△ABD=5,∴S△CFG+S△AEH=54,同理:S△DHG+S△BEF=54,∴S四边形EFGH=S四边形ABCD﹣(S△CFG+S△AEH+S△DHG+S△BEF)=5﹣52=52,设AC与FG,EH相交于M,N,EF与BD相交于P,∵FG∥BD,FG=12BD,∴CM=OM=12OC,同理:AN=ON=12OA,∵OA=OC,∴OM=ON,易知,四边形ENOP,FMOP是平行四边形,∴S阴影=12S四边形EFGH=54,故答案为54.23.解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC=√𝐴𝐵2−𝐵𝐶2=√102−62=8,第11页(共15页)∵CQ=43t,∴AQ=8﹣43t(0≤t≤4).(2)①当PQ∥BC时,𝐴𝑃𝐴𝐵=𝐴𝑄𝐴𝐶,∴5𝑡10=8−43𝑡8,∴t=32s.②当PQ∥AB时,𝐶𝑄𝐶𝐴=𝐶𝑃𝐶𝐵,∴43𝑡8=6−3(𝑡−2)6,∴t=3,综上所述,t=32s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0≤t≤32时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣43t)=﹣16t2+24t.b、如图2中,当32<t≤2时,重叠部分是四边
本文标题:2017年吉林省长春市中考数学试卷(含答案解析版)
链接地址:https://www.777doc.com/doc-6150314 .html