您好,欢迎访问三七文档
初中数学试讲教案:一元二次方程复习试讲人:谭笑知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!1、自我介绍:30s大家下午好!我叫谭笑,2014年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!2、一元二次方程概念、系数、根的判别式:8min30s我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:(1)x²-10x+9=0是1-109(2)x²+2=0是102(3)ax²+bx+c=0不是a必须不等于0(追问为什么)(4)3x²-5x=3x²不是整理式子得-5x=0所以为一元一次方程(追问为什么)好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!一元:只含一个未知数二次:含未知数项的最高次数为2方程:一个等式一元二次方程的一般形式为:ax²+bx+c=0(a≠0)其中,a为二次项系数、b为一次项系数、c为常数项。记住,a一定不为0,b、c都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式!至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于ac4-2b的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。3、一元二次方程的解法:20min那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~(1)直接开方法遇到形如x²=n的二元一次方程,可以直接使用开方法来求解。若n<0,方程无解;若n=0,则x=0,若n>0,则x=±n。同学们能明白吗?(2)配方法大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:简单的一眼看出来的:x²-2x+1=0(x-1)²=0(让同学回答)需要变换的:2x²+4x-8=0步骤:将二次项系数化为1,左右同除2得:x²+2x-4=0将常数项移到等号右边得:x²+2x=4左右同时加上一次项系数一半的平方得:x²+2x+1=4+1所以有方程为:(x+1)²=5形似x²=n然后用直接开平方解得x+1=±5x=±5-1大家能听懂吗?现在我们一起来做一道练习题,2min时间,大家一起报个答案给我!题目:1/2x²-5x-1=0答案:x=±7+5大家都会做吗?还需要讲解详细步骤吗?(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc,没有公式法求不出来的解,当然啦,除非是无解~首先,公式法里面的公式大家还记得吗?x=(-b±ac4-2b)/2a这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。我们来做一道简单的例题:3x²-2x-4=0其中a=3,b=-2,c=-4带入公式得:x=((-(-2))±3*4-*4-2)2()(/(2*3)化简得:x1=(1-13)/3x2=(1+13)/3同学们你们解对了吗?使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!简单来说,因式分解就是将多项式化为式子的乘积形式。比如说ab+a²b可以化成ab(1+a)的乘积形式。那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0这样就可以解出x=-a/mx=-b/n我们一起做一个例题巩固一下:4x²+5x+1=0则可以化成4x²+x+4x+1=0x(4x+1)+(4x+1)=0(x+1)(4x+1)=0所以有x=-1x=-1/4同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。练习题:x²-5x+6=0x=2x=3x²-9=0x=3x=-34、总结:1min好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc系数,会用Δ=b²-4ac来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!同时非常感谢同学们能够来上我的第一堂课,以后一定会有第二堂、第三堂...欢迎课后骚扰~联系方式:13427143243联系邮箱:Samantha_Tan@163.comWechat:smiletantan
本文标题:初中数学试讲教案
链接地址:https://www.777doc.com/doc-6153892 .html