您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 山西省太原市2019年中考数学三模试卷含答案解析
山西省太原市2019年中考数学三模试卷(解析版)一、选择题(每小题3要,共30分)1.﹣2的绝对值是()A.2B.﹣2C.D.2.如图,点D、E分别是△ABC的边AB和AC的中点,已知BC=2,则DE的长为()A.1B.2C.3D.43.下列计算正确的是()A.2a2﹣a2=1B.(a+b)2=a2+b2C.(3b3)2=6b6D.(﹣a)5÷(﹣a)3=a24.不等式组的解集为()A.﹣2<x<1B.x<1C.﹣2≤x<1D.x≥﹣25.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变6.如图,在边长为3的正方形内有区域A(阴影部分所示),小明同学用随机模拟的方法求区域A的面积.若每次在正方形内随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为()A.5B.6C.7D.87.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣3,﹣4)8.如图,△ABC中,∠A=30°,AB=AC,BC=2,以B为圆心,BC长为半径画弧,交AC于点D,交AB于点E,则线段AE、AD与围成的阴影部分的面积是()A.2+2﹣πB.+1﹣πC.2+2﹣πD.+1﹣π9.农大毕业的小王回乡自主创业,在大棚中栽培新品种的蘑菇,该种蘑菇在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,每天只开启一次,如图是某天恒温系统从开启升温到保持恒温及关闭.大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数y=(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这天该种蘑菇适宜生长的时间为()A.18小时B.17.5小时C.12小时D.10小时10.如图,在矩形ABCD中,AB=4cm,cm,E为CD边上的中点,点P从点A沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)11.计算:(x+1)(x2﹣x+1)的结果是.12.如图,直线l1∥l2,且被直线l3所截,若∠1=35°,∠P=90°,则∠2的度数为.13.小明和小亮用如图所示两个转盘如图,对▱ABCD对角线交点O的直线分别交AB的延长线于点E,交CD的延长线于点F,若AB=4,AE=6,则DF的长等于.15.如图,把周长为22的△AOB放在平面直角坐标系中,OB在x轴的正半轴上,AO=AB=6,将△AOB绕点B按顺时针方向旋转一定角度后得到三角形A′O′B′,若点A的对应点A′在x轴上,则点O′的横坐标为.16.利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣=0(a>0)只有一个整数解,则a的值等于.三、解答题17.(10分)(1)计算:(﹣)﹣1﹣(3.14﹣π)0﹣tan60°+;(2)先化简÷+x,然后再选择一个合适的x的值代入求值.18.(6分)如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.19.(7分)某地教育部门对九年级学生的“学习态度”进行了一次抽样调查,把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣,要求被调查的学生从A、B、C三项中必选且只能选择一项,结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该地8000名九年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?20.(7分)如图,已知函数y=kx+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.(1)求函数y=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.21.(6分)对数(生于公元250年左右)是中国数字史上伟大的数学家,在世界数学史上,也占着重要的地位,他的杰作《九章算术法》和《海岛算经》是我国宝贵的数学遗产.(1)其中一卷书研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测杆与横棒,所有问题都是利用两次或多次测量所得的数据,来推算可望而不可及的目标的高、深、广、远,此书收集于明成祖时编修的永乐大典中,现保存在英国剑桥大学图书馆,该卷书是;(2)在(1)中提到刘嶶的杰作中,记载的第一个问题的大意是:在如图所示的示意图中,要测量海岛上一座山峰的高度AH,立两根高3丈的标杆BC和DE,两杆之间的距离BD=1000步,点D、B、H成一线,从B处退行123步到点F处,人的眼睛贴着地面观察点A,点A、C、F也成一线,从D处退行127步到点G处,人的眼睛贴着地面观察点A,点A,E,G也成一线,求AH有多少丈,HB有多少步(这里1步=6尺,1丈=10尺)22.(10分)某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:品种购买价(元/棵)成活率A2890%B4095%设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?(3)在达到(2)中政府的要求并获得最大利润的前提下,承包商用绿化队的40人种植这两种树苗,已知每人每天可种植A种树苗6棵或B种树苗3棵,如何分配人数才能使种植A、B两种树苗同时完工.23.(12分)如图,抛物线y=x2﹣x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC,把△ABC沿x轴向右平移得到△A′B′C′,AB边上的点O平移到点O′.(1)求点B、C的坐标及抛物线的对称轴;(2)在平移的过程中,设点B关于直线A′C′的对称点为点F,当点F落在直线AC上时,求△ABC平移的距离;(3)在平移过程中,连接CA′,CO′,求△A′CO′周长的最小值.24.(14分)如图,tan∠GAB=,AB=10cm,点P从点B出发以5cm/s的速度沿BA向终点A运动,同时点Q以相同的速度从点A出发沿射线AG运动,分别以PB、PQ为边作等边△BPD,正方形PQEF,连接PE,设运动的时间为ts.(1)当PE⊥AG时,求t的值;(2)当△APQ是等腰三角形时,求t的值;(3)当点F落在△BPD的边上时,请直接写出t的值.2019年山西省太原市中考数学三模试卷参考答案与试题解析一、选择题(每小题3要,共30分)1.﹣2的绝对值是()A.2B.﹣2C.D.【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.如图,点D、E分别是△ABC的边AB和AC的中点,已知BC=2,则DE的长为()A.1B.2C.3D.4【考点】三角形中位线定理.【分析】直接利用中位线的定义得出DE是△ABC的中位线,进而利用中位线的性质得出答案.【解答】解:∵点D、E分别是△ABC的边AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC=1.故选:A.【点评】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.3.下列计算正确的是()A.2a2﹣a2=1B.(a+b)2=a2+b2C.(3b3)2=6b6D.(﹣a)5÷(﹣a)3=a2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据整式的运算,合并同类项,完全平方式,积的乘方,幂的乘方运算.【解答】解:A,2a2﹣a2=a2≠1,所以,A错误,B、(a+b)2=a2+b2+2ab≠a2+b2,所以B错误;C、(3b3)2=9a6≠6b6,所以C错误;D、(﹣a)5÷(﹣a)3=a2,所以D正确.故选D【点评】此题是同底数幂的除法题,主要考查了合并同类项,完全平方式,积的乘方,解本题关键是整式的运算的熟练掌握.4.不等式组的解集为()A.﹣2<x<1B.x<1C.﹣2≤x<1D.x≥﹣2【考点】解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x<1,由②得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故选C【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【点评】此题主要考查了三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.6.如图,在边长为3的正方形内有区域A(阴影部分所示),小明同学用随机模拟的方法求区域A的面积.若每次在正方形内随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为()A.5B.6C.7D.8【考点】几何概率.【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【解答】解:由题意,∵在正方形中随机产生了10000个点,落在区域A内点的个数平均值为6600个,∴概率P==,∵边长为3的正方形的面积为9,∴区域A的面积的估计值为×9≈6.故选:B.【点评】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.7.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣3,﹣4)【考点】位似变换;坐标与图形性质.【分析】根据对应点的连线都经过同一点,此点即是位似中心,即可求得答案.【解答】解:∵如图,连接B1B,A1A,并延长,则交点为P,∴点P的坐标为:(﹣4,﹣3).故选A.【点评】此题考查了位似变换.注意根据位似中心的性质,找到位似中心是关键.8.如图,△ABC中,∠A=30°,AB=AC,BC=2,以B为圆心,BC长为半径画弧,交AC于点D,交AB于点E,则线段AE、AD与围成的阴影部分的面积是()A.2+2﹣πB.+1﹣πC.2+2﹣πD.+1﹣π【考点】扇形面积的计算.【分析】作DF⊥AB与F,根据等腰三角形的性质求出∠ABD=45°,根据S阴影=S△ABD﹣S扇形BDE计算即可.【解答】解:作DF⊥AB与F,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵BC=BD,∴∠BDC=∠BCD=75°,∴∠DBC=30°,
本文标题:山西省太原市2019年中考数学三模试卷含答案解析
链接地址:https://www.777doc.com/doc-6154872 .html