您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 17新人教版七年级上册数学第3章_一元一次方程全章教案
1第三章一元一次方程3.1从算式到方程§3.1.1一元一次方程(一)教学目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:5070151070230151350701310502301513问题3:能否用方程的知识来解决这个问题呢?二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:2507035xx,依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:50507032x3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?如果直接设元,还可列方程:70605x如果设王家庄到青山的路程为x千米,那么可以列方程:12060;335xxx说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.四、初步应用1、例题(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.本例题可以先让学生尝试解答,然后教师点评.解:(1)x+18=54;(2)12(27-x)=4x.2、练习(补充):(1)列式表示:①比a小9的数;②x的2倍与3的和;③5与y的差的一半;④a与b的7倍的和.(2)根据下列条件,列出关于x的方程:(1)12与x的差等于x的2倍;(2)x的三分之一与5的和等于6.五、课堂小结1、本节课我们学了什么知识?2、你有什么收获?说明方程解决许多实际问题的工具。六、作业设计课本P84~85:1、53§3.1.1一元一次方程(二)教学目标:1.理解一元一次方程、方程的解等概念;2.掌握检验某个值是不是方程的解的方法;3.培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;4.体验用估算方法寻求方程的解的过程,培养学生求实的态度。教学重点:寻找相等关系、列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?学生回答,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8.这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本第79页的例1。对于基础比较差的学生,教师可以作如下提示:(1)选择一个未知数,设为x,(2)对于这三个问题,分别考虑:用含x的式子表示这台计算机的检修时间;用含x的式子分别表示长方形的长和宽;用含x的式子分别表示男生和女生的人数.(3)找一个问题中的相等关系列出方程.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:选“已使用的时间”可列方程:2450-150x=1700.选“还可使用的时间”可列方程:150x=2450-1700.问题2:在第(3)题中,你还能设其他的未知数为x吗?在学生独立思考、小组讨论的基础上交流:4设这个学校的男生数为x,那么女生数为(x+80),全校的学生数为(x+x+80).列方程:x+80=52%(x+x+80).三、建立概念1.概念的建立.让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:(1)23-x=一7:(2)2a-b=3(3)y+3=6y-9;(4)0.32m-(3+0.02m)=0.7.(5)x2=1(6)11423yy2.引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.四、估算求解列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以像课本那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等.五、课堂练习练习课本第80页中练习六、课堂小结着重引导学生从以下几个方面进行归纳:①这节课我们学习了什么内容?②用列方程的方法解决实际问题的一般思路是什么?③列方程的实质就是用两种不同的方法来表示同一个量.④估算是一种重要的方法.思考:课本第81页中的“思考”.(目的是体验用估算的方法有时会很麻烦)七、作业设计课本第84--85页习题3.1第2,6,7,8题第11题.实际问题一元一次方程设未知数列方程5§3.1.2等式的性质(一)教学目标:1.了解等式的两条性质;2.会用等式的性质解简单的(用等式的一条性质)一元一次方程;3.培养学生观察、分析、概括及逻辑思维能力;4.渗透“化归”的思想.教学重点:理解和应用等式的性质教学难点:应用等式的性质把简单的一元一次方程化成“x=a”教学过程:一、提出问题用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按课本第71页图2.1-2的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8-11=8-11”.3.表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?字母a、b、c可以表示具体的数,也可以表示一个式子。4.观察课本P71图2.1-3,你又能发现什么规律?你能用实验加以验证吗?在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.如果a=b,那么a±c=b±c如果a=b,那么ac=bc如果a=b(c≠0),那么abcc6三、应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。例1课本第82页例2中的第(1)、(2)题.分析:所谓“解方程”,就是要求出方程的解“x=?’’因此我们需要把方程转化为“x=a(a为常数)”形式。问题1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:(1)两边减7,得、x+7-7=26-7,x=19.I问题2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和结果的形式.例2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元.四、课堂练习1.分别说出下列各式子的系数3x,-7m,35y,a,-x,12n2.利用等式的性质解下列方程(1)x-5=6(2)0.3x=45(3)-y=0.6(4)123y3.七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数。4.思考:你能用等式的性质解本课引入时的方程3x-5=22吗?五、课堂小结让学生进行小结,主要从以下几个方面去归纳:①等式的性质有那几条?用字母怎样表示?字母代表什么?②解方程的依据是什么?最终必须化为什么形式?③在字母与数字的乘积中,数字因数又叫做这个式子的系数.六、作业设计课本第83页3.1第3题7§3.1.2等式的性质(二)教学目标:1.进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程2.初步具有解方程中的化归意识;3.培养言必有据的思维能力和良好的思维品质.教学重点:用等式的性质解方程教学难点:需要两次运用等式的性质,并且有一定的思维顺序。教学过程:一、复习引入解下列方程:(1)x+7=1.2;(2)2332x在学生解答后的讲评中围绕两个问题:(1)每一步的依据分别是什么?(2)求方程的解就是把方程化成什么形式?这节课继续学习用等式的性质解一元一次方程。二、探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?例1利用等式的性质解方程:(1)0.5x-x=3.4(2)1543x先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:(1)两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=-2.9,、两边同乘-1,得lx=-2.9小结:(1)这个方程的解答中两次运用了等式的性质(
本文标题:17新人教版七年级上册数学第3章_一元一次方程全章教案
链接地址:https://www.777doc.com/doc-6169520 .html