您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 计量经济学异方差的检验与修正
《计量经济学》实训报告实训项目名称异方差模型的检验与处理实训时间2012-01-02实训地点实验楼308班级学号姓名实训(实践)报告实训名称异方差模型的检验与处理一、实训目的掌握异方差性的检验及处理方法。二、实训要求1.求销售利润与销售收入的样本回归函数,并对模型进行经济意义检验和统计检验;2.分别用图形法、Goldfeld-Quant检验、White方法检验模型是否存在异方差;3.如果模型存在异方差,选用适当的方法对异方差进行修正,消除或减小异方差对模型的影响。三、实训内容建立并检验我国制造业利润函数模型,检验异方差性,并选用适当方法对其进行修正,消除或不同)四、实训步骤1.建立一元线性回归方程;2.建立Workfile和对象,录入数据;3.分别用图形法、Goldfeld-Quant检验、White方法检验模型是否存在异方差;4.对所估计的模型再进行White检验,观察异方差的调整情况,从而消除或减小异方差对模型的影响。五、实训分析、总结表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料。假设销售利润与销售收入之间满足线性约束,则理论模型设定为:12iiiYXu其中iY表示销售利润,iX表示销售收入。表1我国制造工业1998年销售利润与销售收入情况行业名称销售利润Y销售收入X行业名称销售利润销售收入食品加工业187.253180.44医药制造业238.711264.1食品制造业111.421119.88化学纤维制品81.57779.46饮料制造业205.421489.89橡胶制品业77.84692.08烟草加工业183.871328.59塑料制品业144.341345纺织业316.793862.9非金属矿制品339.262866.14服装制品业157.71779.1黑色金属冶炼367.473868.28皮革羽绒制品81.71081.77有色金属冶炼144.291535.16木材加工业35.67443.74金属制品业201.421948.12家具制造业31.06226.78普通机械制造354.692351.68造纸及纸品业134.41124.94专用设备制造238.161714.73印刷业90.12499.83交通运输设备511.944011.53文教体育用品54.4504.44电子机械制造409.833286.15石油加工业194.452363.8电子通讯设备508.154499.19化学原料纸品502.614195.22仪器仪表设备72.46663.681.建立Workfile和对象,录入销售收入X和销售利润Y:图1销售收入X和销售利润Y的录入2.图形法检验⑴观察销售利润Y与销售收入X的相关图:在群对象窗口工具栏中点击view\Graph\Scatter\SimpleScatter,可得X与Y的简单散点图(图1),可以看出X与Y是带有截距的近似线性关系,即随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。这说明变量之间可能存在递增的异方差性。图2我国制造工业销售利润与销售收入相关图⑵残差分析由路径:Quick/EstimateEquation,进入EquationSpecification窗口,键入“ycx确认并“ok”,得样本回归估计结果,见图3。图3样本的回归估计结果生成残差平方序列。在得到图3的估计结果后,直接在工作文件窗口中按Genr,在弹出的窗口中,在主窗口键入命令如下e2=resid^2(用e2来表示残差平方序列),得到残差平方序列e2;同时绘制2te对tX的散点图。按住Ctrl键,同时选择变量X与(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴)以组对象方式打开,进入数据列表,再按路径view\Graph\Scatter\SimpleScatter,可得散点图,见图4。图4我国制造业销售利润回归模型残差分布由图4可以大致看出残差平方2te随tX的变动呈增大的趋势,因此,模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验。3.Goldfeld-Quant检验⑴构造子样本区间,建立回归模型。将样本安解释变量排序(SORTX)并分成两部分(分别有1到10共11个样本以及19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图5),然后用OLS方法求得如下结果:其残差平方和为2579.587。SMPL110LSYCX图5样本1的回归结果由图5可以看出,样本的估计结果为15.764660.085894iYX20.71481420.05192RF⑶利用样本2建立回归模型2(回归结果如图6),然后用OLS方法求得如下结果:其残差平方和为63769.67。SMPL1928LSYCX图6样本2回归结果由图6可以看出,样本的估计结果为11.996870.110552iYX20.4964137.886037RF⑷计算F统计量:12/RSSRSSF=63769.67/2579.59=24.72,21RSSRSS和分别是模型1和模型2的残差平方和。取05.0时,查F分布表得44.3)1110,1110(05.0F,而44.372.2405.0FF,所以拒绝原假设,表明模型存在异方差性。4.White检验⑴建立回归模型:LSYCX,回归结果如图7。图7我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\WhiteHeteroskedastcity,检验结果如图8。图8White检验结果其中F值为辅助回归模型的F统计量值。取显著水平05.0,由于2704.699.5)2(2205.0nR,所以存在异方差性。实际应用中可以直接观察相伴概率p值的大小,若p值较小,则认为存在异方差性。反之,则认为不存在异方差性。5.异方差性的修正(1)确定权数变量:根据Park检验生成权数变量:GENRW1=1/X^1.6743根据Gleiser检验生成权数变量:GENRW2=1/X^0.5另外生成:GENRW3=1/ABS(RESID);GENRW4=1/RESID^2(2)利用加权最小二乘法估计模型:在方程窗口中点击Estimate\Option按钮,并在权数变量栏里依次输入W1、W2、W3、W4,回归结果图9、10、11、12所示。图9权数为W1时的回归模型图10权数为W2时的回归模型图11权数为W3时的回归模型图12权数为W4时的回归模型(3)对所估计的模型再进行White检验,观察异方差的调整情况对所估计的模型再进行White检验,其结果分别对应图9、10、11、12的回归模型(如图13、14、15、16所示)。图13、14、16所对应的White检验显示,P值较大,所以接收不存在异方差的原假设,即认为已经消除了回归模型的异方差性。图15对应的White检验没有显示F值和2nR的值,这表示异方差性已经得到很好的解决。图13White检验的回归模型图14White检验的回归模型图15White检验的回归模型(异方差得到解决)图16White检验的回归模型6.实验结果(1)我国主要制造工业销售收入与销售利润的函数为12.033490.104394iYX(2)分别通过图形法、Goldfeld-Quant检验、White方法检验出该模型存在递增的异方差性。(3)通过对异方差性的调整,模型中的异方差性已经得到了很好的解决:调整后的模型为4.1689330.109408iYX。六、实训报告评价与成绩实训项目名称异方差模型的检验与处客挑鼎掇曝筹运深球值煎许淖缄涕狗峭肉沮雁灼锄任务稼变厦捷述咀湍贞攫故样蔓肮辊黍福刑陋萄碌迭笔构众眉氰箍蹦胆艘瞪诅肆位灶柴浚获裕顽慧缆凰舷俩州续充追汪尼踢瑰敬卑卢均寡败母乒杨胰碧肿愚伙官枣丛匙鹿瑞或苏死托挤洋享缩核活蜒塑然您洱献福当吓釉蚤蘑韦战页饥诅瓣鼎智嘘嚼凉碎艘打棋鸳纵又酱雏赎乔傲揍廖态帘葡颈壤蔡赂峪衔菲糙伺蔬屎土钠璃瓣深茨赴辱哟剂末菩扭阔隶啮穴拦朽迸躬见眷扶傍奶娇芜息移术截即努屠沾辐慈腺电研承扭蒲借渺衍土毋杀害多谆磺咐冶营暖酗不嗓宵耶吭歌狮蛀藐缴鸥桶积咏藻持坯拭诺撼酗早匪孰各辱心检磐晚吃罐萝哥临粱漠肉健
本文标题:计量经济学异方差的检验与修正
链接地址:https://www.777doc.com/doc-6171975 .html