您好,欢迎访问三七文档
行列式行列式是数学中的一个函数,将一个的矩阵映射到一个标量,记作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性数,多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间可以成为描述“体积”的函数。竖直线记法矩阵A的行列式有时也记作|A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的方法混淆。不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵:,行列式也写作,或明确的写作:,即把矩阵的方括号以细长的垂直线取代。直观定义一个n阶方块矩阵A的行列式可直观地定义如下:其中,Sn是集合{1,2,...,n}上置换的全体,即集合{1,2,...,n}到自身上的一一映射(双射)的全体;表示对Sn全部元素的求和,即对于每个σ∈Sn,在加法算式中出现一次;对每一个满足1≤i,j≤n的数对(i,j),ai,j是矩阵A的第i行第j列的元素。sgn(σ)表示置换σ∈Sn的符号差,具体地说,满足1≤ij≤n但σ(i)σ(j)的有序数对(i,j)称为σ的一个逆序。如果σ的逆序共有偶数个,则sgn(σ)1,如果共有奇数个,则sgn(σ)-1。举例来说,对于3元置换σ(2,3,1)(即是说σ(1)2,σ(2)3,σ(3)1)而言,由于1在2后,1在3后,所以共有2个逆序(偶数个),因此sgn(σ)1,从而3阶行列式中项的符号是正的。但对于三元置换σ(3,2,1)(即是说σ(1)3,σ(2)2,σ(3)1)而言,可以数出共有3个逆序(奇数个),因此sgn(σ)-1,从而3阶行列式中项的符号是负号[25][26]。注意到对于任意正整数n,Sn共拥有n!个元素,因此上式中共有n!个求和项,即这是一个有限多次的求和。对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图中红线和蓝线)。2阶矩阵的行列式:[27]3阶矩阵的行列式:三阶矩阵的行列式为每条红线上的元素的乘积之和,减去蓝线上元素乘积之和。但对于阶数n≥4的方阵A,这样的主对角线和副对角线分别只有n条,由于A的主、副对角线总条数2n(n-1)nn!的元素个数因此,行列式的相加项中除了这样的对角线乘积之外,还有其他更多的项。例如4阶行列式中,项就不是任何对角线的元素乘积。不过,和2、3阶行列式情况相同的是,n阶行列式中的每一项仍然是从矩阵中选取n个元素相乘得到,且保证在每行和每列中都恰好只选取一个元素,而整个行列式恰好将所有这样的选取方法遍历一次。另外,n×n矩阵的每一行或每一列也可以看成是一个n元向量,这时矩阵的行列式也被称为这n个n元向量组成的向量组的行列式。几何意义:二维和三维欧氏空间中的例子行列式的一个自然的源起是n维平行体的体积。行列式的定义和n维平行体的体积有着本质上的关联二维向量组的行列式行列式是向量形成的平行四边形的面积在一个二维平面上,两个向量X=(a,c)和X'=(b,d)的行列式是:比如说,两个向量X=(2,1)和X'=(3,4)的行列式是:经计算可知,当系数是实数时,行列式表示的是向量X和X'形成的平行四边形的有向面积,并有如下性质:行列式为零当且仅当两个向量共线(线性相关),这时平行四边形退化成一条直线[29]。如果以逆时针方向为正向的话,有向面积的意义是:平行四边形面积为正当且仅当以原点为不动点将X逆时针“转到”X'处时,扫过的地方在平行四边形里,否则的话面积就是负的。如右图中,X和X'所构成的平行四边形的面积就是正的[31]。行列式是一个双线性映射。也就是说,,并且[29]。行列式其几何意义是:以同一个向量v作为一条边的两个平行四边形的面积之和,等于它们各自另一边的向量u和u'加起来后的向量:u+u'和v所构成的平行四边形的面积,如左图中所示。三维向量组的行列式[编辑]在三维的有向空间中,三个三维向量的行列式是:。[28]比如说,三个向量(2,1,5)、(6,0,8)和(3,2,4)的行列式是:当系数是实数时,行列式表示X、X′和X″三个向量形成的平行六面体的有向体积,也叫做这三个向量的混合积。同样的,可以观察到如下性质[32]:行列式为零当且仅当三个向量共线或者共面(三者线性相关),这时平行六面体退化为平面图形,体积为零[30]。两个相邻平行六面体的体积之和三维空间中有向体积的定义要比二维空间中复杂,一般是根据右手定则来约定。比如右图中(u,v,w)所形成的平行六面体的体积是正的,而(u,w,v)所形成的平行六面体的体积是负的。这个定义和行列式的计算并不矛盾,因为行列式中向量的坐标都是在取好坐标系后才决定的,而坐标系的三个方向一般也是按照右手规则来设定的。如果计算开始时坐标系的定向反过来的话,有向体积的定义也要跟着反过来,这样行列式才能代表有向体积[30][33]。这时行列式是一个“三线性映射”,也就是说,对第一个向量有,对第二、第三个向量也是如此。其几何意义和二维时基本相同,是指当生成两个平行六面体的每组三个向量中如果有两个是重合的,比如分别是:(u,v,w)和(u',v,w),那么它们的体积之总和等于将u和u'加起来后的向量u+u'和v,w所形成的平行六面体的体积,如右图所示[30]。基底的选择[编辑]在以上的行列式中,我们不加选择地将向量在所谓的正交基(即直角坐标系)下分解,实际上在不同的基底之下,行列式的值并不相同。这并不是说平行六面体的体积不唯一。恰恰相反,这说明体积的概念依赖于衡量空间的尺度,也就是基底的取法。用基底的变换可以看作线性映射对基底的作用,而不同基底下的行列式代表了基变换对“体积”的影响。可以证明,对于所有同定向的标准正交基,向量组的行列式的值在绝对值意义上是一样的[34]。也就是说,如果我们选择的基底都是“单位长度”,并且两两正交,那么在这样的基之下,平行六面体的体积的绝对值是唯一的[35]。线性变换[编辑]经线性映射后的正方体设E是一个一般的n维的有向欧几里得空间。一个线性变换把一个向量线性地变为另一个向量。比如说,在三维空间中,向量(x,y,z)被映射到向量(x',y',z'):其中a、b、c是系数。如右图,正方体(可以看作原来的一组基形成的)经线性变换后可以变成一个普通的平行六面体,或变成一个平行四边形(没有体积)。这两种情况表示了两种不同的线性变换,行列式可以将其很好地分辨出来(为零或不为零)。更详细地说,行列式表示的是线性变换前后平行六面体的体积的变化系数。如果设左边的正方体体积是一,那么中间的平行六面体的(有向)体积就是线性变换的行列式的值,右边的平行四边形体积为零,因为线性变换的行列式为零。这里我们混淆了线性变换的行列式和向量组的行列式,但两者是一样的,因为我们在对一组基作变换[36]。行列式与空间定向[编辑]以上二维和三维行列式的例子中,行列式被解释为向量形成的图形的面积或体积。面积或体积的定义是恒正的,而行列式是有正有负的,因此需要引入有向面积和有向体积的概念。负的面积或体积在物理学中可能难以理解,但在数学中,它们和有向角的概念类似,都是对空间镜面对称特性的一种刻画。如果行列式表示的是线性变换对体积的影响,那么行列式的正负就表示了空间的定向[37]。如上图中,左边的黄色骰子(可以看成有单位的有向体积的物体)在经过了线性变换后变成中间绿色的平行六边形,这时行列式为正,两者是同定向的,可以通过旋转和拉伸从一个变成另一个。而骰子和右边的红色平行六边形之间也是通过线性变换得到的,但是无论怎样旋转和拉伸,都无法使一个变成另一个,一定要通过镜面反射才行。这时两者之间的线性变换的行列式是负的。可以看出,线性变换可以分为两类,一类对应着正的行列式,保持空间的定向不变,另一类对应负的行列式,颠倒空间的定向[37][38][39]。一般域上的行列式:严格的定义[编辑]由二维及三维的例子,可以看到一般的行列式应该具有怎样的性质。在n维欧几里得空间中,作为“平行多面体”的“体积”的概念的推广,行列式继承了“体积”函数的性质。首先,行列式需要是线性的,这可以由面积的性质类比得到。这里的线性是对于每一个向量来说的,因为当一个向量变为原来的a倍时,“平行多面体”的“体积”也变为原来的a倍。其次,当一个向量在其它向量组成的“超平面”上时,n维“平行多面体”的“体积”是零(可以想像三维空间的例子)。也就是说,当向量线性相关时,行列式为零。在一般系数域上的线性空间中,行列式也正是由这样的特性所刻划的:交替多线性形式[编辑]行列式是系数域为K的有限维线性空间E上射到K的交替n-线性形式[40]。具体来说,设E是一个系数在域K上的有限维线性空间,维数为n。一个E上的交替n-线性形式是指满足以下性质的函数:1.n重线性:2.交替性:或者说,当的时候所有E上的交替n-线性形式的集合记作An(E)。定理:An(E)的维度是1。也就是说,设是E的一组基,那么,所有的交替n-线性形式都可以写成其中是在基B下的展开[40][41]。证明:对任一个n-线性形式,考虑将D依照多线性性质展开,这时,由交替性,当且仅当是的一个排列,所以有这里,。向量组的行列式[编辑]设是E的一组基,根据上面的定理和线性形式的性质,可以定义B下的行列式。定义:E上的一组基的行列式是唯一一个满足:的交替n-线性形式。其中的唯一性是因为如果有两个交替n-线性形式满足条件,则它们的差在一组基上为0,从而恒等于0。于是,一组基上的一个向量组的行列式就是:定义:确定了E上的一组基B后,向量组在B下的行列式是:其中是在下的展开[42]。可以见到这个定义与之前直观的定义是吻合的,它有时也被称作莱布尼兹公式。基变更公式[编辑]设B与B′是向量空间中的两组基,则将上面定理中的f改为就得到向量组在两组基下的行列式之间的关系:,矩阵的行列式[编辑]设为所有定义在系数域K上的矩阵的集合。将矩阵M(M的元素记为)的n列写成,可以看作是的正则基上的向量。矩阵M的行列式定义为向量组的行列式。这里的向量都在的正则基上展开,因此矩阵的行列式不依赖于基的选择。定义:矩阵M的行列式[43]这样定义的矩阵M的行列式与向量组的行列式有同样的性质。单位矩阵的行列式为1,若矩阵的某几行线性相关,则它的行列式为零。由莱布尼兹公式,可以证明矩阵行列式的一个重要性质:定理:一个矩阵的行列式等于它的转置矩阵的行列式:,[44]也就是说矩阵的行列式既可以看作n个行向量的行列式,也可以看作n个列向量的行列式。因此也可以通过行向量组来定义矩阵行列式,并且得到的定义是等价的。证明[44]:矩阵A的转置矩阵的行列式是:令,由于每个排列都是双射,所以上式变成:令,当取遍所有置换时,也取遍所有排列。另一方面,,因此而且。所以线性变换的行列式[编辑]设f是n维线性空间E到自身的线性变换(自同态),对于给定的一组基,可以定义线性变换在这组基下的行列式。定义:设B是E的一组基。设f在B的变换矩阵为,那么f在B下的行列式就是:。f的变换矩阵满足也就是说对所有的向量组,。可以证明,f在E的任意一组基下的变换矩阵的行列式都是相等的[45]。证明:考虑映射使得被映射到,是一个交替n-线性形式,因此由前面证的定理,和只相差一个系数。。而由变换矩阵的性质可以知道:也就是说对于
本文标题:行列式
链接地址:https://www.777doc.com/doc-6191934 .html