您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 武汉理工大学材料力学第04章(弯曲内力复习)-06
一、梁弯曲时内力––剪力和弯矩正负规定:左上右下为正(1)剪力FS:(2)弯矩M:左顺右逆为正可以装水为正MFSACFAFBFMFSCBFalAbxFBFA内力的正负规定:(1)剪力FS:左上右下为正;反之为负。左上右下为正FSFSFSFS+FSFS+(2)弯矩M:使梁变成上凹下凸的为正弯矩;反之为负弯矩。MMMM(+)MM(+)左顺右逆为正可以装水为正剪力=截面左侧所有外力在y轴上投影代数之和,向上为正。弯矩=截面左侧所有外力对该截面之矩的代数和,顺时针为正。AqBDaCaaFAFB求D截面上的内力。解:AqBDaCaaFAFBqa32[例1]qaFFASqaqa32qa312212qaaFMA221232qaaqa265qa二、剪力方程和弯矩方程剪力图和弯矩图BxqlAqxFS22xqMFS=FS(x)剪力方程)(xMM弯矩方程)(d)(dSxFxxM)(d)(d22xqxxMxqxxFddS1、若q=0,则FS=常数,M是斜直线;2、若q=常数,则FS是斜直线,M为二次抛物线;3、M的极值发生在FS=0的截面上。三、载荷集度、剪力和弯矩间的关系四、简易作图法特殊点:端点、分区点(外力变化点)和驻点等。利用内力和外力的关系及特殊点的内力值来作图的方法。二、剪力、弯矩与外力间的关系外力无外力段均布载荷段集中力集中力偶q=0q0q0FS图特征M图特征CMe水平直线xFSFS0FSFS0x斜直线增函数xFSxFS降函数xFSCFS1FS2FS1–FS2=F向下突变xFSC无变化斜直线xM增函数xM降函数曲线xMxM有折角向上突变MxM1M2e12MMMCFFSx[例2]画梁的剪力图和弯矩图–+qaFqaFBA2521qBF=qaCA2aFAFBaqa21qa232a+qaMx+281qa2qa–qaxF)(2S11S)(qxFxFA)3()(22xaFxM21121qxxFA)(1xM12qxqa2112121qxqaxx2x1FSx[例2]画梁的剪力图和弯矩图–+qaFqaFBA2521qBF=qaCA2aFAFBaqa21qa232a+qaMx+281qa2qa–FSx[例3]画梁的剪力图和弯矩图–+qlFB23MxqBMe=ql2CA2lFAFB+lql21ql2323l289ql2qlqlFA210)(1SxF)()(22SlxqFxFAe1)(MxM222e)(21)(lxqlxFMA)(2xMx2x1FSx[例3]画梁的剪力图和弯矩图–+qlFB23MxqBMe=ql2CA2lFAFB+lql21ql2323l289ql2qlqlFA21FSx[例4]画梁的剪力图和弯矩图–+qlFqlFCA3234MxqBMe=2ql2CA2lFAFC+lql34ql32l34234ql232ql+292ql–x1AFxF)(1S)()(22SlxqFxFA1A1)(xFxM22e2)(21lxqMxFA)(2xMql34x2FSx[例4]画梁的剪力图和弯矩图–+qlFqlFCA3234MxqBMe=2ql2CA2lFAFC+lql34ql32l34234ql232ql+292ql–[例5]F=3kNq=10kN/mB1.2m0.6mMe=3.6kN·mCFAFBDA0.6mkN5kN10BAFFFS(kN)x3M(kN·m)x2.45–++–M0=1.251.21.8x0=0.7m7––+070xq27.072.10M7[例6]qBa2aMe=qa2CFAFBDAa61365qaFqaFBAFSxMx+++–+–65qa65a67qaqa652qa62qa22qa72132qaqa2qa2M图22qaCBqaaAF=qaACB试作图示刚架的弯矩图。[例7]
本文标题:武汉理工大学材料力学第04章(弯曲内力复习)-06
链接地址:https://www.777doc.com/doc-6192684 .html