您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 电大高等数学基础必过考试精篇复习资料必备小抄
电大高等数学基础必过考试精篇复习资料必备小抄资料仅供参考高等数学基础归类复习考试小抄一、单项选择题1-1下列各函数对中,(C)中的两个函数相等.A.2)()(xxf,xxg)(B.2)(xxf,xxg)(C.3ln)(xxf,xxgln3)(D.1)(xxf,11)(2xxxg1-⒉设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.xy设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(D)对称.A.xyB.x轴C.y轴D.坐标原点.函数2eexxy的图形关于(A)对称.(A)坐标原点(B)x轴(C)y轴(D)xy1-⒊下列函数中为奇函数是(B).A.)1ln(2xyB.xxycosC.2xxaayD.)1ln(xy下列函数中为奇函数是(A).A.xxy3B.xxeeyC.)1ln(xyD.xxysin下列函数中为偶函数的是(D).Axxysin)1(Bxxy2CxxycosD)1ln(2xy2-1下列极限存计算不正确的是(D).A.12lim22xxxB.0)1ln(lim0xxC.0sinlimxxxD.01sinlimxxx2-2当0x时,变量(C)是无穷小量.A.xxsinB.x1C.xx1sinD.2)ln(x当0x时,变量(C)是无穷小量.Ax1BxxsinC1exD2xx.当0x时,变量(D)是无穷小量.Ax1BxxsinCx2D)1ln(x下列变量中,是无穷小量的为(B)A1sin0xxBln10xxC1xexD.2224xxx3-1设)(xf在点x=1处可导,则hfhfh)1()21(lim0(D).A.)1(fB.)1(fC.)1(2fD.)1(2f设)(xf在0x可导,则hxfhxfh)()2(lim000(D).A)(0xfB)(20xfC)(0xfD)(20xf设)(xf在0x可导,则hxfhxfh2)()2(lim000(D).A.)(20xfB.)(0xfC.)(20xfD.)(0xf设xxfe)(,则xfxfx)1()1(lim0(A)AeB.e2C.e21D.e413-2.下列等式不成立的是(D).A.xxdedxeB)(cossinxdxdxC.xddxx21D.)1(lnxdxdx下列等式中正确的是(B).A.xdxxdarctan)11(2B.2)1(xdxxdC.dxdxx2)2ln2(D.xdxxdcot)(tan4-1函数14)(2xxxf的单调增加区间是(D).A.)2,(B.)1,1(C.),2(D.),2(函数542xxy在区间)6,6(内满足(A).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升.函数62xxy在区间(-5,5)内满足(A)A先单调下降再单调上升B单调下降C先单调上升再单调下降D单调上升.函数622xxy在区间)5,2(内满足(D).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升5-1若)(xf的一个原函数是x1,则)(xf(D).A.xlnB.21xC.x1D.32x资料仅供参考.若)(xF是)(xf的一个原函数,则下列等式成立的是(A)。A)()()(aFxFdxxfxaB)()()(afbfdxxFbaC)()(xFxfD)()()(aFbFdxxfba5-2若xxfcos)(,则xxfd)((B).A.cxsinB.cxcosC.cxsinD.cxcos下列等式成立的是(D).A.)(d)(xfxxfB.)()(dxfxfC.)(d)(dxfxxfD.)(d)(ddxfxxfxxxfxxd)(dd32(B).A.)(3xfB.)(32xfxC.)(31xfD.)(313xfxxxfxd)(dd2(D)A)(2xxfBxxfd)(21C)(21xfDxxxfd)(2⒌-3若cxFxxf)(d)(,则xxfxd)(1(B).A.cxF)(B.cxF)(2C.cxF)2(D.cxFx)(1补充:xefexxd)(ceFx)(,无穷积分收敛的是dxx121函数xxxf1010)(的图形关于y轴对称。二、填空题⒈函数)1ln(39)(2xxxxf的定义域是(3,+∞).函数xxxy4)2ln(的定义域是(2,3)∪(3,4]函数xxxf21)5ln()(的定义域是(-5,2)若函数0,20,1)(2xxxxfx,则)0(f1.2若函数0,0,)1()(1xkxxxxfx,在0x处连续,则ke..函数002sin)(xkxxxxf在0x处连续,则k2函数0,sin0,1xxxxy的间断点是x=0.函数3322xxxy的间断点是x=3。函数xey11的间断点是x=03-⒈曲线1)(xxf在)2,1(处的切线斜率是1/2.曲线2)(xxf在)2,2(处的切线斜率是1/4.曲线1)(xexf在(0,2)处的切线斜率是1..曲线1)(3xxf在)2,1(处的切线斜率是3.3-2曲线xxfsin)(在)1,2π(处的切线方程是y=1.切线斜率是0曲线y=sinx在点(0,0)处的切线方程为y=x切线斜率是14.函数)1ln(2xy的单调减少区间是(-∞,0).函数2e)(xxf的单调增加区间是(0,+∞)..函数1)1(2xy的单调减少区间是(-∞,-1)..函数1)(2xxf的单调增加区间是(0,+∞).函数2xey的单调减少区间是(0,+∞).5-1xxded2dxex2..xxdxddsin22sinx.xxd)(tantanx+C.若cxxxf3sind)(,则)(xf-9sin3x.5-2335d)21(sinxx3.11231dxxx0.edxxdxd1)1ln(0下列积分计算正确的是(B).资料仅供参考A0d)(11xeexxB0d)(11xeexxC0d112xxD0d||11xx三、计算题(一)、计算极限(1小题,11分)(1)利用极限的四则运算法则,主要是因式分解,消去零因子。(2)利用连续函数性质:)(0xf有定义,则极限)()(lim00xfxfxx类型1:利用重要极限1sinlim0xxx,kxkxxsinlim0,kxkxxtanlim0计算1-1求xxx5sin6sinlim0.解:565sin6sinlim5sin6sinlim00xxxxxxxx1-2求0tanlim3xxx解:xxx3tanlim031131tanlim310xxx1-3求xxx3tanlim0解:xxx3tanlim0=3313.33tanlim0xxx类型2:因式分解并利用重要极限1)()sin(limaxaxax,1)sin(limaxaxax化简计算。2-1求)1sin(1lim21xxx.解:)1sin(1lim21xxx=2)11(1)1.()1sin()1(lim1xxxx2-221sin1lim1xxx解:211111)1(1.)1()1sin(lim1)1sin(lim121xxxxxxx2-3)3sin(34lim23xxxx解:2)1(lim)3sin()1)(3(lim)3sin(34lim3323xxxxxxxxxx类型3:因式分解并消去零因子,再计算极限3-14586lim224xxxxx解:4586lim224xxxxx=)1)(4()2)(4(lim4xxxxx3212lim4xxx3-22236lim12xxxxx2233332625limlimlim123447xxxxxxxxxxxxx3-3423lim222xxxx解4121lim)2)(2()1)(2(lim423lim22222xxxxxxxxxxxx其它:0sin21limsin11lim2020xxxxxx,221sinlim11sinlim00xxxxx5456lim22xxxxx1lim22xxx,54362lim22xxxxx3232lim22xxx(0807考题)计算xxx4sin8tanlim0.解:xxx4sin8tanlim0=248.4sin8tanlim0xxxxx(0801考题.)计算xxx2sinlim0.解xxx2sinlim021sinlim210xxx(0707考题.))1sin(32lim21xxxx=4)31(1)1sin()3).(1(lim1xxxx(二)求函数的导数和微分(1小题,11分)(1)利用导数的四则运算法则vuvu)(vuvuuv)((2)利用导数基本公式和复合函数求导公式xx1)(ln1)(aaaxxxxee)(ueeuu.)(xxxxxxxx22csc)(cotsec)(tansin)(coscos)(sin资料仅供参考xexeexexeexexeexxxxxxxxxsin).(cos)(cos).(sin)(2).()(coscoscossinsinsin2222xxxxxeeeeexxxxxuuucos).(cos)(sincos2).(cos)(sin.cos)(sin2222xxxxeeeeexxxxxuuusin).(sin)(cossin2)(sin)(cos.sin)(cos2222类型1:加减法与乘法混合运算的求导,先加减求导,后乘法求导;括号求导最后计算。1-1xxxye)3(解:y=332233xxxexe1322332xxxexe1322332xxxe1-2xxxylncot2解:xxxxxxxxxxxxyln2csc)(lnln)(csc)ln()(cot222221-3设xxeyxlntan,求y.解:xxexexxexexxeyxxxxx1sectan1)(tantan)()(ln)tan(2类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导2-1xxylnsin2,求y解:xxxxxy1cos2)(ln)(sin222-22sinecosxyx,求解:2222cos2esine).(cos).(sin)(sin)(cosxxxxeexeyxxxxx2-3xexy55ln,求,解:xxxxexy5455e5ln5).()(ln类型3:乘积与复合函数混合运算的求导,先乘积求导,后复合求导xeyxcos2,求y。解:xexxexexeyxxxxsincos2)(coscos)(2222其它:xx
本文标题:电大高等数学基础必过考试精篇复习资料必备小抄
链接地址:https://www.777doc.com/doc-6195764 .html