您好,欢迎访问三七文档
对数运算法则一、对数的定义:对数blogNaNab底数真数注:负数和零没有对数01loga1logaaNaNalog(N0)二、对数运算法则1、运算公式:a0,a≠1,M0;N0则:NaMaNMaloglog)(log①NaMaNMalogloglog②)(loglogRnMannMa③NaNalog∴M∙N=aq+pNaMalogloglogqpNMa证明:性质①设∴M=apN=aq∴M∙N=ap∙aq=aq+pqNapMaloglogNaMaNMalogloglog②练习:证明2、应用举例:例1、用表示下列各式:zayaxalog,log,logzxyalog)(1322zyxalog)(zayaxazaxyazxyaloglogloglog)(loglog)(1解:32322zayxazyxalogloglog)(32zayaxalogloglogxayaloglog3121xa2log3222224231)(log)()(logyxxyxayzxa)(算下列各式。练习:用对数的法则计例2:求下列各式的值:5100lg)2()(log52742(1)522742527421loglog(log))解:(19514225427loglog5100lg)2(5221051511001005lg)lg(lg271364232552logloglog练习:2533271315223)log(logloglog)(2325312533301)(log解:原式25502224lglglg))(lg(25105222lg)(lglg)(lg解:原式5215222lg)(lglg)(lg)()(212221222210225222lglglglg)(lglglglglg)(lg2)(lglglglglg220583225(1)练习:计算14222112248722logloglog)(NaMaNMaloglog)(log①NaMaNMalogloglog②)(loglogRnMannMa③)公式知识回顾:(1NaNalog:)(公式的作用2化简;求值;证明。.,,.)(643723作业:习题
本文标题:对数函数的运算法则
链接地址:https://www.777doc.com/doc-6206094 .html