您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初二数学经典题型(含答案)
初二数学经典题型1.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.2.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.4、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a正方形的边长.6.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.ANFECDMBAPCDBPCGFBQADE①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.答案1、证明如下。首先,PA=PD,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。在正方形ABCD之外以AD为底边作正三角形ADQ,连接PQ,则∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD,所以△PAQ≌△PDQ,那么∠PQA=∠PQD=60°÷2=30°,在△PQA中,∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB,于是PQ=AQ=AB,显然△PAQ≌△PAB,得∠PBA=∠PQA=30°,PB=PQ=AB=BC,∠PBC=90°-30°=60°,所以△ABC是正三角形。2、证明:连接AC,并取AC的中点G,连接GF,GM.又点N为CD的中点,则GN=AD/2;GN∥AD,∠GNM=∠DEM;(1)同理:GM=BC/2;GM∥BC,∠GMN=∠CFN;(2)又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN.3、证明:分别过E、C、F作直线AB的垂线,垂足分别为M、O、N,在梯形MEFN中,WE平行NF因为P为EF中点,PQ平行于两底所以PQ为梯形MEFN中位线,所以PQ=(ME+NF)/2又因为,角0CB+角OBC=90°=角NBF+角CBO所以角OCB=角NBF而角C0B=角Rt=角BNFCB=BF所以△OCB全等于△NBF△MEA全等于△OAC(同理)所以EM=AO,0B=NF所以PQ=AB/2.4、过点P作DA的平行线,过点A作DP的平行线,两者相交于点E;连接BE因为DP//AE,AD//PE所以,四边形AEPD为平行四边形所以,∠PDA=∠AEP已知,∠PDA=∠PBA所以,∠PBA=∠AEP所以,A、E、B、P四点共圆所以,∠PAB=∠PEB因为四边形AEPD为平行四边形,所以:PE//AD,且PE=AD而,四边形ABCD为平行四边形,所以:AD//BC,且AD=BC所以,PE//BC,且PE=BCPADCB即,四边形EBCP也是平行四边形所以,∠PEB=∠PCB所以,∠PAB=∠PCB5解:将△BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ因为△BAP≌△BCQ所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC因为四边形DCBA是正方形所以∠CBA=90°,所以∠ABP+∠CBP=90°,所以∠CBQ+∠CBP=90°即∠PBQ=90°,所以△BPQ是等腰直角三角形所以PQ=√2*BP,∠BQP=45因为PA=a,PB=2a,PC=3a所以PQ=2√2a,CQ=a,所以CP^2=9a^2,PQ^2+CQ^2=8a^2+a^2=9a^2所以CP^2=PQ^2+CQ^2,所以△CPQ是直角三角形且∠CQA=90°所以∠BQC=90°+45°=135°,所以∠BPA=∠BQC=135°作BM⊥PQ则△BPM是等腰直角三角形所以PM=BM=PB/√2=2a/√2=√2a所以根据勾股定理得:AB^2=AM^2+BM^2=(√2a+a)^2+(√2a)^2=[5+2√2]a^2所以AB=[√(5+2√2)]a6.解:(1)证法一:①∵四边形ABCD是正方形,AC为对角线,∴BC=DC,∠BCP=∠DCP=45°.∵PC=PC,∴△PBC≌△PDC(SAS).∴PB=PD,∠PBC=∠PDC.又∵PB=PE,∴PE=PD.②(i)当点E在线段BC上(E与B、C不重合)时,∵PB=PE,∴∠PBE=∠PEB,∴∠PEB=∠PDC,∴∠PEB+∠PEC=∠PDC+∠PEC=180°,∴∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°,∴PE⊥PD.)(ii)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.(iii)当点E在BC的延长线上时,如图.∵∠PEC=∠PDC,∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综合(i)(ii)(iii),PE⊥PD.(2)①过点P作PF⊥BC,垂足为F,则BF=FE.∵AP=x,AC=2,ACBPDABCPDEFABCDPE12H∴PC=2-x,PF=FC=xx221)2(22.BF=FE=1-FC=1-(x221)=x22.∴S△PBE=BF·PF=x22(x221)xx22212.即xxy22212(0<x<2).②41)22(21222122xxxy.∵21a<0,∴当22x时,y最大值41.(1)证法二:①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°.又∵PB=PE,∴BF=FE,∴GP=FE,∴△EFP≌△PGD(SAS).∴PE=PD.②∴∠1=∠2.∴∠1+∠3=∠2+∠3=90°.∴∠DPE=90°.∴PE⊥PD.(2)①∵AP=x,∴BF=PG=x22,PF=1-x22.∴S△PBE=BF·PF=x22(x221)xx22212.即xxy22212(0<x<2).②41)22(21222122xxxy.∵21a<0,∴当22x时,y最大值41.26.(本小题满分8分)ABCPDEFG123如图1,在四边形ABCD中,ABCD,EF、分别是BCAD、的中点,连结EF并延长,分别与BACD、的延长线交于点MN、,则BMECNE(不需证明).(温馨提示:在图1中,连结BD,取BD的中点H,连结HEHF、,根据三角形中位线定理,证明HEHF,从而12,再利用平行线性质,可证得BMECNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,ABCD,EF、分别是BCAD、的中点,连结EF,分别交DCAB、于点MN、,判断OMN△的形状,请直接写出结论.问题二:如图3,在ABC△中,ACAB,D点在AC上,ABCD,EF、分别是BCAD、的中点,连结EF并延长,与BA的延长线交于点G,若60EFC°,连结GD,判断AGD△的形状并证明.26.(1)等腰三角形·······················································································1分(2)判断出直角三角形···················································································1分证明:如图连结BD,取BD的中点H,连结HFHE、,····································1分F是AD的中点,HFAB∥,12HFAB,13.同理,12HECDHECD∥,,2EFC.ABCD,HFHE,12.································································································1分60EFC°,360EFCAFG°,AGF△是等边三角形.···············································································2分AFFD,GFFD,30FGDFDG°90AGD°即AGD△是直角三角形.··············································································2分ACBDFENMOEBCDHAFNM12图1图2图3ABCDFGEABCDFGHE123
本文标题:初二数学经典题型(含答案)
链接地址:https://www.777doc.com/doc-6213608 .html