您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 等差数列前n项和性质3
1211112111221161122,,,,();,()(),(,;()):nnnnnnnnnnnnnSnaSnaSnaaaanSnaSnaSnaSSnaa奇偶奇偶奇偶设数列为等差数列其奇数项之和为偶数项之和为中间项为当项数为奇性则当项数为偶数数项时中间项为项时质探知求索SS奇偶1nnaaS偶-S奇=ndS偶-S奇=an+1SS奇偶nn111116126776776121112354226562275265326222763543227325()(),,:,:,:adaaddaddSaSaaSaaadaa奇偶由解得解法一解法二例题示范在等差数列{an}中,已知公差d=1/2,且a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=()A.85B.145C.110D.90A牛刀小试33644{},.:,,na已知等差数列的项数为奇数且奇数项的和为偶数项的和为求此数列的中间项练及项数习11421144333711,(),:,,.:nnnSnaSnana奇偶设项数为则解得所以共项中间项为解法一10315102,..()||;()|;.|nnnnaananna已知数列求数四可化为等差数列前项和的数列问题例列的前项之和求数列的前项之和41234101234123410123410123123410310101030333711022212,{},,,||||||||||,||||||||||()():nnnnnnannaaTaaaaaSaaaaaTaaaaaaaaaaaaaaaaaaSS数列中前项是正的从第四项开始为负数设解由212341234221231234372089271033172322431731748222422().()(),;,||||||||||nnnnnnnnnnnnTSnTaaaaaaaaaannnnaaaaaaaaSS当时当时12113412341234211012310413104310403473403503432052235|||||||||||||||||(),,,,,.,,,,,,:;nnnnnnnnnnnnanaSSnnanannTaaaaaaaaaaSTaanaannnnaan当时时也适合由当时当时当时解当时1234352123412342232052235023205342223205350235222|||,,,nnnnnaaaaaaaaaaaaSSnnTnnnnnn例8.设等差数列的前n项和为Sn,已知a3=12,S120,S130.(1)求公差d的取值范围;(2)指出数列{Sn}中数值最大的项,并说明理由.解:(1)由已知得a1+2d=1212a1+6×11d013a1+13×6d02437d等差数列{an}前n项和的性质倒序法求和倒序相加法:将数列的顺序倒过来排列,与原数列两式相加,若有公因式可提,并且剩余项的和易于求得,这样的数列可用倒序相加法求和。倒序法求和221)(xxf23例1.若)6()5()4()5(ffff,则的值为。221)(xxfxxxxf2222221)1(1xx2222122222211)1()(xxxfxf【解析】∵∴∴裂项法求和所谓”裂项法”就是把数列的各项分裂成两项之差,相邻的两项彼此相消,就可以化简后求和.一些常用的裂项公式:11)1(nn12)12(1)2(nn)2(1)3(nnnn11)4(111nn)121121(nn21nn1)211(nn211111[2].11212312nSn例求的值解:nan211设)1(2nn)111(2nn)]111()111()3121()211[(2nnnn122)111(2nnSn)1(2)1(2322212nnnnSn练习:求和裂项法求和13)1311(31)]131231()7141()411[(31)13)(23(1741411nnnnnnn)13)(23(1nn31)131231(nn提示:∴)13)(23(11071741411nn111111112233445111111132435211121121231233().():();()()..nnnnnnSnnSnnSnn四可化为等差数列求数列前项和的数列问的和练习题例前项.11321211:3的值求练习nnSn11nnan解:设nn11111321211nnnnSn)1()1()23()12(nnnn11n利用数列周期性求和有的数列是周期数列,把握了数列的周期则可顺利求和.关键之处是寻找周期。nannnaaaaaa12321,2,3,12002S例3:在数列中,求nnnaaaaaa12321,2,3,1,2,3,1654aaa,2,3,1,2,3,1121110987aaaaaa解:由可得……利用数列周期性求和2,3,1,2,3,1665646362616kkkkkkaaaaaa0665646362616kkkkkkaaaaaa2002S)()()(66261612876321kkkaaaaaaaaaa2002200120001999199819941993)(aaaaaaa2002200120001999aaaa54321aaaa而∴例4:求和其它方法求和分组求和法)12()1(531nn解:设)12()1(531nSnn当n为偶数时,设n=2k,则)14()]34([5312kkSk)]14()34([)75()31(kkk2)12(12)14(22212kkkkaSSkkknSnn)1(而且22212123416.:,,,,,(),.nnnn四可化为等差数列前项和的数列求数列的问习前练项和题222122222222112341123411212343411111234121111221()()(),()()()()()()(),,())(),(:nnnnnnnnnnnnnSSnnnnSSnnnnnnnn则当为偶数时当为奇数时则为偶数解设
本文标题:等差数列前n项和性质3
链接地址:https://www.777doc.com/doc-6224015 .html