您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 卷积神经网络研究综述-李彦冬
2016-03-302016-04-20。2012BAH44F02M17010601CXY2011057。1984—、1977—、1960—。1001-9081201609-2508-08doi10.11772/j.issn.1001-9081.2016.09.2508*,,(,610054)(*416840140@qq.com)、、。、、、。TP181ASurveyofconvolutionalneuralnetworkLIYandong*,HAOZongbo,LEIHang(SchoolofInformationandSoftwareEngineering,UniversityofElectronicScienceandTechnologyofChina,ChengduSichuan610054,China)Abstract:Inrecentyears,ConvolutionalNeuralNetwork(CNN)hasmadeaseriesofbreakthroughresearchresultsinthefieldsofimageclassification,objectdetection,semanticsegmentationandsoon.ThepowerfulabilityofCNNforfeaturelearningandclassificationattractswideattention,itisofgreatvaluetoreviewtheworksinthisresearchfield.AbriefhistoryandbasicframeworkofCNNwereintroduced.RecentresearchesonCNNwerethoroughlysummarizedandanalyzedinfouraspects:over-fittingproblem,networkstructure,transferlearningandtheoreticanalysis.State-of-the-artCNNbasedmethodsforvariousapplicationswereconcludedanddiscussed.Atlast,someshortcomingsofthecurrentresearchonCNNwerepointedoutandsomenewinsightsforthefutureresearchofCNNwerepresented.Keywords:ConvolutionalNeuralNetwork(CNN);deeplearning;featurerepresentation;neuralnetwork;transferlearning。ConvolutionalNeuralNetworkCNN。。。LeNet-51、。。DeepBeliefNetworkDBN2ConvolutionalDeepBeliefNetworkCDBN34AlexNet5R-CNNRegionswithCNN6FullyConvolutionalNetworkFCN7。8-10。1112-13。。11.1、。1。2060Hubel14ReceptiveField。1980FukushimaNeocognitron15。Neocognitron、。NeocognitronJournalofComputerApplications,2016,36(9):2508-2515,2565ISSN1001-9081CODENJYIIDU2016-09-10.joca.cn。2。1998Lecun1LeNet-5。。。LeNet-5。16、17、18。3。2012Krizhevsky5AlexNetImageNet1911%。AlexNetVGGVisualGeometryGroup8、GoogleGoogLeNet9、ResNet10AlexNetImageNet。。RecurrentNeuralNetworkRNN20-2122-2324———3D25。1.2、、。1。。GoogLeNetInception、VGGResNetshortconnection。。。。2。。SIFTScale-InvariantFeatureTransform26、HOGHistogramofOrientedGradient27。。28-2924。30-31。、、。3。132、2533、34。35-36、37。GoogleAlphago38。。22.11、、、。1X。HiiH0=X。HiHiHi=fHi-1Wi+bi1Wii“”i-1ibifxiHi。39。12。HiHi=subsamplingHi-12Ylii。3H0Y。Yi=PL=li|H0Wb3LWb。H0“”。MeanSquaredErrorMSENegativeLogLikelihoodNLL40MSEWb=1|Y|∑|Y|i=1Yi-^Yi24NLLWb=-∑|Y|i=1logYi5L2λweightdecay90529EWb=LWb+λ2WTW6。Wb。ηWi=Wi-ηEWbWi7bi=bi-ηEWbbi82.22.1、1。、λ、η。810、2441、42-43。44。。2。。45。5846。。3。。30-31。。31234。3.1over-fitting40。、。。Hinton47Dropout。Dropout。Dropout。DropoutWan48DropConnect。DropoutDropConnect。DropConnectDropout。DropConnectGoodfellow42Maxout。DropConnectMaxout。Goodfellow42Maxout。2Dropout、DropConnectMaxout。2Dropout、DropConnect、MaxoutLin43MaxoutNINNetworkinNetwork。NINGlobalaveragepoolingNIN“”microneuralnetworkMaxout。。Zeiler39Stochasticpooling。AveragepoolingMaxpoolingStochasticpooling。。10152362、、、。3.2Lecun1LeNet-5。LeNet-512LeNet-53。。。LeNet-5Krizhevsky5AlexNet。AlexNet5656000LeNet-5。AlexNetImageNet19。ImageNet1000120。AlexNetdropout。AlexNetGPUCPUGPU。AlexNetImageNet201211%。AlexNet。Simonyan8AlexNetVGG。VGG3×3Simonyan。49。VGG16~19。He10。。HeResNet。ResNetshortconnectionsx。FxshortconnectionFx+x。HeFx+xFx。xshortconnection0。shortconnection。ResNetVGG152ResNetVGG。ResNet123。Szegedy9。Inception。3Inception1×13×35×512。InceptionGoogLeNetAlexNet1/12ImageNetAlexNet10%。3InceptionSpringenberg50“”。“”。12。VGG、ResNet。GoogLeNet、。3.3。。Donahue30t-SNE51。t-SNE。t-SNEDonahueGISTGIST52LLCLocality-constrainedLinearCoding53t-SNE11529t-SNE。Donahue12Donahue3t-SNE。4Zeiler24t-SNE。DeConvNet54。4。、。ZeilerAlexNet。、。Zeiler。Nguyen55。5Nguyen56。Nguyen。。5“”1、2Nguyen55“”。。3.4“”5711。“”。61ImageNet2Caltech3。6Zeiler24ImageNetCaltech-10158Caltech-2565940%。ImageNetCaltech。Donahue30ZeilerImageNetdomainadaption、subcategoryrecognitionscenerecognition。Razavian31。Zhou60ImageNetPlaces60。ImageNetPlaces。122152363。123。4。1。AlexNetImagNet84.7%AlexNetVGG8、GoogLeNet9、PReLU-net46BN-inception61。ResNet10ImageNet96.4%ResNetAlexNet。。2。。。Gishick662Ren63R-CNN6、FastR-CNN62FasterR-CNN63。R-CNNCNNregionproposals64。R-CNNregionproposals。FastR-CNNregionproposalsregionproposalsregionproposalsFastR-CNN。FasterR-CNN7regionproposals64。。3。Khan6566-67Levi68Long7FCNZhou60Ji253D。。4。AlphaGo38Abdel-Hamid37HiddenMarkovModelHMMKalchbrenner35Donahue20LRCNLong-termRecurrentConvolutionalNetwork。。、。51。。。2。。。3。4。。、。5FasterR-CNNFCN。6。。6、、、、31529。。。[1]LECUNY,BOTTOUL,BENGIOY,etal.Gradient-basedlearningappliedtodocumentrecognition[J].ProceedingsoftheIEEE,1998,86(11):2278-2324.[2]HINTONGE,OSINDEROS,TEHYW.Afastlearningalgorithmfordeepbeliefnets[J].NeuralComputation,2006,18(7):1527-1554.[3]LEEH,GROSSER,RANGANATHR,etal.Convolutionaldeepbeliefnetworksforscalableunsupervisedlearningofhierarchicalrep-resentations[C]//ICML'09:Proceedingsofthe26thAnnualInter-nationalConferenceonMachineLearning.NewYork:ACM,2009:609-616.[4]HUANGGB,LEEH,ERIKG.Learninghierarchicalrepresenta-tionsforfaceverificationwithconvolutionaldeepbeliefnetworks[C]//CVPR'12:Proceedingsofthe2012IEEEConferenceonComputerVisionandPatternRecognition.Washington,DC:IEEEComputerSociety,2012:2518-2525.[5]KRIZHEVSKYA,SUTSKEVERI,HINTONGE.ImageNetclassi-ficationwithdeepconvolutionalneuralnetworks[C]//ProceedingsofAdvancesinNeuralInformationProcessingSystems.Ca
本文标题:卷积神经网络研究综述-李彦冬
链接地址:https://www.777doc.com/doc-6234680 .html