您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 冀教版七年级数学教案
1.1正数和负数(一)一、教学目标(一)知识与技能:1.会判断一个数是正数还是负数。2.能用正、负数表示生活中具有相反意义的量。(二)过程与方法:经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性。(三)情感态度价值观:感知到数学知识来源于生活并为生活服务。二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。2.学生学法:研究实际问题→认识负数→负数在实际中的应用。三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。2.难点:负数的引入。3.疑点:负数概念的建立。四、课时安排:2课时五、教具学具准备:课件、中国地图。六、教学设计思路教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数„„师小结:为了实际生活需要,在数物体个数时,1、2、3„„出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问。【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃。[板书]105-5-10师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰---珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形)。学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米。【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位。教师针对学生回答的情况给与指正。师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、10℃记作+5、+10、+1.6、+10,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数。师随着叙述给出板书[板书]正数:大于0的数负数:正数前面加“-”号(小于0的数)0:既不是正数也不是负数。【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的。(三)尝试反馈,巩固练习1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?2.出示1(投影显示)例1所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里-11,4.8,+7.3,0,-2.7,16,61,127,-8.12,433.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。正数集合{}负数集合{}4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答。【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础。师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生回答。教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:(出示投影)1.填空(1)-50表示支出50元,那么+100元表示_____________。(2)正常水位为0m,水位高于正常水位0.2m记作______________,低于正常水位0.3m记作______________。(3)乒乓球比标准重量重0.039记作_____________;比标准重量轻0.019记作_____________;标准重量记作______________。2.一个学生演示,教师提出要求规定向前走为正。(1)向前走2步记作_________________。(2)向后走5步记作_________________。(3)“记作6步”他应怎么走?“记作-4步”呢?(4)原地不动记作_________________。(出示投影5)3.例题一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动。(1)如果向东运动4m记作4m,向西运动5m记作_______________。(2)如果-7m表示物体向西运动7m,那么6m表明物体怎样运动?学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.【教法说明】用正数、负数表示相反意义的量是本节的重点。首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的。这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求。师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?有没有比零小的数?(有,是负数)1.正数和负数表示的是一对相反意义的量。2.零既不是正数也不是负数。八、随堂练习1.判断题(l)0是自然数,也是偶数()。(2)0可以看成是正数,也可以看成是负数()。(3)海拔-155米表示比海平面低155米()。(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元()。(5)如果向南走记为正,那么-10米表示向北走-10米()。(6)温度0℃就是没有温度()。2.将下列各数填入相应的大括号里-9,21,0,812,2000,+61,103,-10.8正数集合{}负数集合{}3.用正数和负数表示下列各量(1)零上24摄氏度表示为__________,零下3.5摄氏度表示为______________。(2)足球比赛,赢2球可记作_________球,输一球应记作____________球。九、布置作业(一)必做题1.下列各数中哪些是正数?哪些是负数?-16,0.04,+87,21,53,0,25.8,-3.6,-4,9651,-0.12.一物体可左右移动,设向右为正,(1)向左移动12m应记作什么?(2)“记作8m”表明什么?(二)选做题1.一潜水艇所在高度为-50m,一条鲨鱼在艇上方10m处,鲨鱼所在的高度是多少?2.甲地海拔高度是30m,乙地海拔高度是20m,丙地海拔高度是-10m,哪个地方最高,哪个地方最低?最高的地方比最低的地方高多少?十、板书设计1.1正数和负数(二)一、教学目标(一)知识与技能:1.能说出有理数的意义。2.能把给出的有理数按要求分类,知道数0在有理数分类中的作用。3.会求一个数的相反数。(二)过程与方法:经历相反数的抽象概括过程,培养归纳概括的数学思想方法。(三)情感态度价值观:通过有理数的分类,得到对称美的享受。二、学法引导1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识。2.学生学法:识记→练习巩固。三、重点、难点、疑点及解决办法1.重点:有理数包括哪些数。2.难点:有理数的分类。3.疑点:明确有理数分类标准。四、教具学具准备:投影仪、自制胶片。五、教学设计思路教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。六、教学过程设计(一)复习导入(出示投影1)1.把下列各数填入相应的大括号内:+6,211,3.8,0,-4,-6.2,722,-3.8,32正数集合{}负数集合{}2.填空:(1)若下降5m记作-5m,那么上升8m记作__________________,不升不降记作_____________________。(2)如果规定+20表示收入20元,那么-10元表示______________。(3)如果由A地向南走3千米用3千米表示,那么-5千米表示____________________,在A地不动记作__________________。【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。师:在小学大家学过1,2,3,4……这是什么数呢?生:自然数。师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?生:负数。师:具体叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。(二)探索新知,讲授新课1.分类数的名称1,2,3,4……叫做正整数;-1,-2,-3,-4……叫做负整数。0叫做零。218,32,2.5(即515)……叫做正分数;214,76,5.3(即313)……叫做负分数;正整数、负整数和零统称为整数。正分数和负分数统称为分数。整数和分数统称有理数。即整数:正整数、负整数和零有理数分数:正分数、负分数【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。提出问题:巩固概念(出示投影2)(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类尝试反馈,巩固练习(出示投影3)下列有理数中:-7,10.1,61,89,0,-0.67,53.3哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生思考,然后找同学逐一回答.其他同学准备补充或纠正。【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。3.数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫
本文标题:冀教版七年级数学教案
链接地址:https://www.777doc.com/doc-6239656 .html