您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 中职数学基础模块下册《平面向量的概念》ppt课件
2.1向量的基本概念唉,哪儿去了?嘻嘻!大笨猫!AB一、向量的定义既有大小,又有方向的量叫做向量。二、向量的表示方法有向线段(起点、)1几何表示法:a,b2字母表示法:ABB(终点)A(起点)方向、长度单位向量---长度(模)等于1个单位长度的向量叫作单位向量。2.两个特殊向量:问:在平面上把所有单位向量的起点平移到同一点P,那么它们的终点的集合组成什么图形?三、向量的有关概念零向量---长度(模)为0的向量叫做零向量,记作0。1.向量的长度(模):向量AB的大小也就是向量的长度(模)。|a||AB|或记作P1.温度含零上和零下温度,所以温度是向量()判断题2.向量的模是一个正实数。()3.若|a||b|,则ab注:向量不能比较大小•长度相等且方向相同的两个向量表示相等向量,•但是两个向量之间只有相等关系,没有大小之分,“对于向量a,b,a>b,或a<b”这种说法是错误的.3.向量间的关系平行向量又叫做共线向量各向量的终点与直线l之间有什么关系?如:abc(1)平行向量:方向相同或相反的非零向量叫做平行向量。记作a∥b∥c规定:0与任一向量平行。问:把一组平行于直线l的向量的起点平移到直线l上的一点O,这时它们是不是平行向量?ol.COC=cAOA=aOB=bB向量相等向量平行平行向量一定是相等向量吗?相等向量一定是平行向量吗?(2)相等向量:长度相等且方向相同的向量叫做相等向量。记作:a=b规定:0=0ab1.若非零向量AB//CD,那么AB//CD吗?2.若a//b,则a与b的方向一定相同或相反吗?o.baABCDDCBA11个例1.如图设O是正六边形ABCDEF的中心,写出图中与向量OA相等的向量。OA=DO=CB变式一:与向量OA长度相等的向量有多少个?变式二:是否存在与向量OA长度相等,方向相反的向量?存在,为FECB、DO、FE变式三:与向量OA长度相等的共线向量有哪些?1.下面几个命题:(3)若|a|=|b|,则a=b(2)若|a|=0,则a=0|a|=|b|a∥b(4)两个向量a、b相等的充要条件是(1)若a=b,b=c,则a=c。当b≠0时成立。变:若a∥b,b∥c,则a∥cA.0B.1C.2D.3其中真命题的个数是()(5)若A、B、C、D是不共线的四点,则AB=DC是四边形ABCD是平形四边形的充要条件。ABDCBACD2.某人从A点出发向东走了5米到达B点,然后改变方向按东北方向走了米到达C点,到达C点后又改变方向向西走了10米到达D点(1)作出向量AB,BC,CD;(2)求AD的模西东北南1mABCD向量定义长度(模)表示几何表示法:有向线段符号表示法:零向量单位向量向量间的关系相等平行(共线)a,bAB向量的有关概念特殊向量小结:作业:课本86页习题2.1第2题,第3题
本文标题:中职数学基础模块下册《平面向量的概念》ppt课件
链接地址:https://www.777doc.com/doc-6266372 .html