您好,欢迎访问三七文档
1§3.1.1直线的倾斜角和斜率23一次函数的图象有何特点?给定函数y=2x+1,如何作出它的图像?复习回顾4我们知道,两点确定一条直线.一点能确定一条直线的位置吗?已知直线l经过点P,直线l的位置能够确定吗?问题引入xyOlP5过一点P可以作无数条直线l1,l2,l3,…它们都经过点P(组成一个直线束),这些直线区别在哪里呢?问题引入xyOlP6容易看出,它们的倾斜程度不同.怎样描述直线的倾斜程度呢?问题引入xyOlP7当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angleofinclination).xyOl当直线l与x轴平行或重合时,规定它的倾斜角为.0直线的倾斜角的取值范围为:.1800一.直线的倾斜角问题:在直角坐标系中,过点P的一条直线绕点P旋转,不管旋转多少周,他对x轴的相对位置有几种情形,请画出来?8直线的倾斜程度与倾斜角有什么关系?平面直角坐标系中每一条直线都有确定的倾斜角,倾斜程度不同的直线有不同的倾斜角,度相同的直线其倾斜角相同.倾斜程xyOlll已知直线上的一个点不能确定一条直线的位置;同样已知直线的倾斜角α.也不能确定一条直线的位置.但是,直线上的一个点和这条直线的倾斜角可以唯一确定一条直线.直线的倾斜角9确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.确定直线的要素xyOlP10为什么大桥的引桥要很长?思考:为什么滑滑梯要很高才刺激?11日常生活中,还有没有表示倾斜程度的量?前进量升高量前进量升高量坡度(比)问题引入12通常用小写字母k表示,即tank一条直线的倾斜角的正切值叫做这条直线的斜率(slope).倾斜角是的直线有斜率吗?90)90(二.直线的斜率如果使用“倾斜角”这个概念,那么这里的“坡度(比)”实际就是“倾斜角α的正切”.13如:倾斜角时,直线的斜率45.145tank当为锐角时,.tan)180tan(如:倾斜角为时,由135145tan135tank即这条直线的斜率为.1倾斜角α不是90°的直线都有斜率,并且倾斜角不同,直线的斜率也不同.因此,可以用斜率表示直线的倾斜程度.14下列哪些说法是正确的()A、任一条直线都有倾斜角,也都有斜率B、直线的倾斜角越大,斜率也越大C、平行于x轴的直线的倾斜角是0或πD、两直线的斜率相等,它们的倾斜角也相等D15练习关系为的大小的斜率在图中的直线,,,,)1(321321kkkllll1l2l316已知直线上两点的坐标,如何计算直线的斜率?两点的斜率公式给定两点P1(x1,y1),P2(x2,y2),并且x1≠x2,如何计算直线P1P2的斜率k.17当为锐角时,.,,212121yyxxPQP在直角中QPP2112121221||||tantanxxyyQPQPPQP设直线P1P2的倾斜角为α(α≠90°),当直线P1P2的方向(即从P1指向P2的方向)向上时,过点P1作x轴的平行线,过点P2作y轴的平行线,两线相交于点Q,于是点Q的坐标为(x2,y1).两点的斜率公式18tan)180tan(tan当为钝角时,,18021PQP,21xx.21yy在直角中QPP211212211212||||tanxxyyxxyyQPQP.tan1212xxyy两点的斜率公式19同样,当的方向向上时,也有12PP.tan1212xxyy两点的斜率公式201.已知直线上两点,运用上述公式计算直线斜率时,与两点坐标的顺序有关吗?),(),,(222111yxPyxPAB21,PP无关两点的斜率公式2.当直线平行于y轴,或与y轴重合时,上述斜率公式还适用吗?为什么?不适用21当直线与轴平行或重合时,上述式子还成立吗?为什么?12PPx经过两点的直线的斜率公式为:))(,(),,(21222111xxyxPyxP.tan1212xxyy两点的斜率公式成立22斜率公式)(:),(),,(211212222111xxxxyykyxPyxP的直线的斜率公式经过两点公式的特点:(1)与两点的顺序无关;(2)公式表明,直线对于x轴的倾斜度,可以通过直线上任意两点的坐标来表示,而不需要求出直线的倾斜角;(3)当x1=x2时,公式不适用,此时直线与x轴垂直,α=90023例1如下图,已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角还是钝角。例题分析OxyACB24例2、在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2和-3的直线。例题分析4321,,llll及Oxy3l1l2l4lA3A1A2A425两点间斜率公式知识小结倾斜角斜率951234P练习,,,983.11,2,3,4PA习题组作业设计:26(3)如图,直线l1的倾斜角α1=300,直线l1⊥l2,求l1、l2的斜率.α1α2xy练习
本文标题:直线的倾斜角和斜率
链接地址:https://www.777doc.com/doc-6280426 .html