您好,欢迎访问三七文档
常用积分公式(一)含有的积分()axb+0a≠1.dxaxb+∫=1lnaxbCa++2.=()axbxμ+∫d11()(1)axbCaμμ++++(1μ≠−)3.dxxaxb+∫=21(ln)axbbaxbCa+−++4.2dxxaxb+∫=22311()2()ln2axbbaxbbaxbCa⎡⎤+−++++⎢⎥⎣⎦5.d()xxaxb+∫=1lnaxbCbx+−+6.2d()xxaxb+∫=21lnaaxbCbxbx+−++7.2d()xxaxb+∫=21(ln)baxbCaax++++b8.22d()xxaxb+∫=231(2ln)baxbbaxbCaaxb+−+−++9.2d()xxaxb+∫=211ln()axbCbaxbbx+−++(二)含有axb+的积分10.daxbx+∫=32()3axbCa++11.dxaxbx+∫=322(32)()15axbaxbCa−++12.2dxaxbx+∫=222332(15128)()105axabxbaxbCa−+++13.dxxaxb+∫=22(2)3axbaxbCa−++114.2dxxaxb+∫=22232(348)15axabxbaxbCa−+++15.dxxaxb+∫=1ln(0)2arctan(0)axbbCbbaxbbaxbCbbb⎧+−+⎪++⎪⎨⎪++⎪−−⎩16.2dxxaxb+∫=d2axbaxbxbxaxb+−−+∫17.daxbxx+∫=d2xaxbbxaxb+++∫18.2daxbxx+∫=d2axbaxxxaxb+−++∫(三)含有22xa±的积分19.22dxxa+∫=1arctanxCaa+20.22d()nxxa+∫=2221222123d2(1)()2(1)()nnxnnaxanaxa−−x−+−+−+∫21.22dxxa−∫=1ln2xaCaxa−++(四)含有的积分2(0axba+)22.2dxaxb+∫=1arctan(0)1ln(0)2axCbbabaxbCbabaxb⎧+⎪⎪⎨−−⎪+⎪−+−⎩23.2dxxaxb+∫=21ln2axbCa++224.22dxxaxb+∫=2dxbxaaaxb−+∫25.2d()xxaxb+∫=221ln2xCbaxb++26.22d()xxaxb+∫=21daxbxbaxb−−+∫27.32d()xxaxb+∫=22221ln22axbaCbxbx+−+28.22d()xaxb+∫=221d2()2xxbaxbbaxb+++∫(五)含有的积分2axbxc++(0a)29.2dxaxbxc++∫=222222222arctan(4)44124ln(4)424axbCbacbacbaxbbacCbacbacaxbbac+⎧+⎪−−⎪⎨+−−⎪+⎪−++−⎩ac30.2dxxaxbxc++∫=221dln22bxaxbxcaaaxbxc++−++∫(六)含有22xa+(0a)的积分31.22dxxa+∫=1arshxCa+=22ln()xxaC+++32.223d()xxa+∫=222xCaxa++33.22dxxxa+∫=22xaC++34.223d()xxxa+∫=221Cxa−++335.222dxxxa+∫=22222ln()22xaxaxxa+−+++C36.2223d()xxxa+∫=2222ln()xxxaCxa−+++++37.22dxxxa+∫=221lnxaaCax+−+38.222dxxxa+∫=222xaCax+−+39.22dxax+∫=22222ln()22xaxaxxa+++++C40.223()dxax+∫=22224223(25)ln()88xxaxaaxxaC++++++41.22dxxa+∫x=2231()3xaC++42.222dxxa+∫x=4222222(2)ln()88xaxaxaxxaC++−+++43.22dxaxx+∫=2222lnxaaxaaCx+−+++44.222dxaxx+∫=2222ln()xaxxaCx+−++++(七)含有22xa−(0a)的积分45.22dxxa−∫=1archxxCxa+=22lnxxaC+−+46.22d()x3xa−∫=222xCaxa−+−47.22dxxxa−∫=22xaC−+448.223d()xxxa−∫=221Cxa−+−49.222dxxxa−∫=22222ln22xaxaxxa−++−+C50.2223d()xxxa−∫=2222lnxxxaCxa−++−+−51.22dxxxa−∫=1arccosaCax+52.222dxxxa−∫=222xaCax−+53.22dxax−∫=22222ln22xaxaxxa−−+−+C54.223()dxax−∫=22224223(25)ln88xxaxaaxxaC−−++−+55.22dxxax−∫=2231()3xaC−+56.222dxxax−∫=4222222(2)ln88xaxaxaxxaC−−−+−+57.22dxaxx−∫=22arccosaxaaCx−−+58.222dxaxx−∫=2222lnxaxxaCx−−++−+(八)含有22ax−(0a)的积分59.22dxax−∫=arcsinxCa+60.22d()xax−∫3=222xCaax+−561.22dxxax−∫=22axC−−+62.223d()xxax−∫=221Cax+−63.222dxxax−∫=222arcsin22xaxaxCa−−++64.2223d()xxax−∫=22arcsinxxCaax−+−65.22dxxax−∫=221lnaaxCax−−+66.222dxxax−∫=222axCax−−+667.22dax−∫x=222arcsin22xaaxCa−++x68.223()ax−∫dx=222243(52)arcsin88xxaxaxaaC−−++69.22dxax−∫x=2231()3axC−−+70.222dxax−∫x=42222(2)arcsin88xaxxaaxCa−−++71.22daxxx−∫=2222lnaaxaxaCx−−−++72.222daxxx−∫=22arcsinaxxCxa−−−+(九)含有2axbxc±++(0a)的积分73.2dxaxbxc++∫=21ln22axbaaxbxcCa+++++74.2daxbxcx++∫=224axbaxbxca+++2234ln228acbaxbaaxbxcCa−++++++75.2dxxaxbxc++∫=21axbxca++23ln222baxbaaxbxcCa−+++++76.2dxcbxax+−∫=212arcsin4axbCabac−−++77.2dcbxaxx+−∫=223224arcsin484axbbacaxbcbxaxCaabac−++−+++2−78.2dxxcbxax+−∫=23212arcsin24baxbcbxaxCaabac−−+−+++(十)含有xaxb−±−或()()xabx−−的积分79.dxaxxb−−∫=()()ln()xaxbbaxaxbxb−C−+−−+−+−80.dxaxbx−−∫=()()arcsinxaxaxbbabxbx−−C−+−+−−81.d()(x)xabx−−∫=2arcsinxaCbx−+−()ab82.()()dxabxx−−∫=22()()()arcsin44xabbaxaxabxCbx−−−−−−++−()ab(十一)含有三角函数的积分783.sindxx∫=cosxC−+84.cosdxx∫=sinxC+85.tandxx∫=lncosxC−+86.cotdxx∫=lnsinxC+87.secdxx∫=lntan()42xCπ++=lnsectanxxC++88.cscdxx∫=lntan2xC+=lncsccotxxC−+89.2secdxx∫=tanxC+90.2cscdxx∫=cotxC−+91.sectandxxx∫=secxC+92.csccotdxxx∫=cscxC−+93.2sindxx∫=1sin224xxC−+94.2cosdxx∫=1sin224xxC++95.sindnxx∫=1211sincossindnnnxxxnn−−−−+∫x96.cosdnxx∫=1211cossincosdnnnxxxnn−−−+∫x97.dsinnxx∫=121cos2d1sin1sinnnxnxnxn−−−−⋅+−−∫x98.dcosnxx∫=121sin2d1cos1cosnnxnxnxn−−−⋅+−−∫x99.cossindmnxxx∫=11211cossincossindmnmnmxxxmnmn−+−xx−+++∫=11211cossincossindmnmnnxxxmnmn+−−xx−−+++∫100.=sincosdaxbxx∫11cos()cos()2()2()abxabxCabab−+−−++−8101.=sinsindaxbxx∫11sin()sin()2()2()abxabxCabab−++−++−102.=coscosdaxbxx∫11sin()sin()2()2()abxabxCabab++−++−103.dsinxabx+∫=2222tan22arctanxabCabab++−−22()ab104.dsinxabx+∫=222222tan12lntan2xabbaCxbaabba+−−+−++−22()ab105.dcosxabx+∫=2arctan(tan)2ababxCababab+−++−+22()ab106.dcosxabx+∫=tan12lntan2xababbaCabbaxabba+++−++−+−−22()ab107.2222dcossinxaxbx9+∫=1arctan(tan)bxCaba+108.2222dcossinxaxbx1tanln2tanbxaCabbxa+−∫=+−109.sindxaxx∫=211sincosaxxaxCaa−+110.2sindxaxx∫=223122cossincosxaxxaxaxCaaa−+++111.cosdxaxx∫=211cossinaxxaxCaa++112.2cosdxaxx∫=223122sincossinxaxxaxaxCaaa+−+(十二)含有反三角函数的积分(其中)0a113.arcsindxxa∫=22arcsinxxaxCa+−+114.arcsindxxxa∫=2222()arcsin244xaxxaxCa−+−+115.2arcsindxxxa∫=322221arcsin(2)39xxxaaxCa++−+116.arccosdxxa∫=22arccosxxaxCa−−+117.arccosdxxxa∫=2222()arccos244xaxxaxCa−−−+118.2arccosdxxxa∫=322221arccos(2)39xxxaaxCa−+−+119.arctandxxa∫=22arctanln()2xaxaxCa−++120.arctandxxxa∫=221()arctan22xaaxxCa+−+121.2arctandxxxa∫=33222arctanln()366xxaaxaxCa−+++(十三)含有指数函数的积分122.=dxax∫1lnxaCa+123.edaxx∫=1eaxCa+124.edaxxx∫=21(1)eaxaxCa−+125.ednaxxx∫=11eenaxnaxndxxxaa−−∫126.dxxax∫=21ln(ln)xxxaaaaC−+127.dnxxax∫=11dlnlnnxnxnxaxaaa−−∫x128.=esindaxbxx∫221e(sincos)axabxbbxCab−++129.=ecosdaxbxx∫221e(sincos)axbbxabxCab+++10130.=esindaxnbxx∫12221esin(sinco
本文标题:常用积分表-(2)
链接地址:https://www.777doc.com/doc-6290986 .html