您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 传感器的基本特性与指标
第二章传感器技术基础--基本特性与指标•理想传感器和传感器的误差因素•传感器的一般数学模型•传感器的静、动态特性•传感器的互换性及其他特性要求1.理想传感器应具有的特点1)传感器只敏感特定输入量,输出只对应特定输入;2)传感器的输出量与输入量呈惟一、稳定的对应关系,最好为线性关系;3)传感器的输出量可实时反映输入量的变化。实际中,传感器在特定的、具体的环境中使用,其结构、元器件、电路系统以及各种环境因素均可能影响传感器的整体性能。2.1理想传感器和传感器的误差因素外界影响传感器误差因素冲击振动温度电磁场供电输入输出线性滞后重复性灵敏度各种环境干扰稳定性的因素温漂零点漂移分辨率影响传感器性能的因素2.传感器误差通过传感器得到的测量值与被测量的真值之差。传感器的误差来源:1)介入误差源于敏感元件的介入对被测系统的环境造成影响。2)应用误差源于使用者对具体传感器原理的认识不足或设计缺陷。3)特性参数误差源于传感器本身的特性参数;生产传感器和用户考虑最多的误差。4)动态误差源于被测参数变化时传感器反应滞后5)环境误差各种环境参数变化均可能带来误差1.静态模型静态时(输入量对时间t的各阶导数为零),可分析非线性系统,即有:x——输入量;y——输出量;a0——传感器的零位误差;a1——传感器的灵敏度,常用K或S表示。a2,a3,…,an——待定常数(非线性项的系数)。nnxaxaay102.2传感器的一般数学模型数学模型用于研究传感器的输出—输入特性。一般将检测静态量和动态量时的特性分开考虑。原因:检测静态量、动态量的传感器,需要以带随机变量的非线性微分方程作为数学模型,但造成数学分析困难。最理想的特性。优点:简化传感器的理论分析、计算,为标定和数据处理带来很大方便,避免非线性补偿环节,便于后续制作安装、调试,提高测量精度。(a)(b)(c)xay144221xaxaxay44221xaxaxay55331xaxaxayxbdtdxbdtxdbdtxdbyadtdyadtydadtydammmmmmnnnnnn01111011112.动态模型传感器静态特性好,并不一定能很好地反映输入量随时间变化尤其是快速变化的状况,可能因此而存在严重的动态误差。传感器动态分析常用的数学模型有时域的微分方程和对应频域的传递函数、频率响应函数以及状态方程。线性系统的特点(叠加性、频率保持性)使得动态分析只分析线性系统。1)微分方程*采用微分方程描述传感器:2)传递函数用拉氏变换将适当的数学模型(微分方程)转换成复数域(S域)的数学模型,可得相应的传递函数,以便于求解。由控制理论知,对上式所表示的传感器,其传递函数为0101)()()(asasabsbsbsXsYsHnnmm式中Y(s)、X(s)是初始条件为零时,输出和输入信号的拉氏变换。用途:表征传感器的传输、转换特性。它只与传感器内部参数有关,与输入信号及传感器的初始状态无关。当输入为正弦信号,且传感器稳定时,可用jω代替s。对多环节组成的串联或并联组成的传感器或系统,如果各环节阻抗匹配适当,求总的传递函数可略去相互间的影响。对于n个环节组成的串联系统:对于n个环节组成的并联系统:niisHsH1)()(nisHisH1)()(2.3.1.静态特性与指标一.线性度表征传感器输入-输出的实际静态标定(校准)曲线与所选参考(拟合)直线(作为工作直线)之间的吻合(或偏离)程度。所选拟合直线不同,计算出的线性度数值不同。选择拟合直线应保证所得非线性误差尽量小,且方便使用与计算。常用拟合方法:1.理论线性度:按系统的理论特性确定,与实测值无关。特点:简单方便,但通常估算值偏大。非线性误差:线性度常用引用误差表示:式中,——输出平均值曲线与基准拟合直线间的最大误差;——理论满量程输出值。*标定?理论特性实际特性..SFyyxOmaxLmaxLeL%100..maxSFnLyLrmaxL..SFy2.3传感器的静、动态特性2.端基线性度以校准数据的零点输出平均值和满量程输出平均值连成的直线为参考直线所得的线性度式中,--满量程输出平均值;--零点输出平均值。特点:简单,但估计值偏大,零点不为零3.最小二乘线性度按最小二乘法原理拟合直线,使该直线与传感器或系统的校准数据的残差平方和最小。思路:设拟合直线方程为得偏差:式中,i=1,2,…,n.(n为测试点数)直线拟合原则:应使为最小值。由分别对k和b求一阶导数,并令其为0,即可求得k和b。拟合直线yxOmaxL0y..SFy图端基线性度%1000..maxyyLrSFnL..SFy0ykxbyiiikxbyvniiv12niiv12最小二乘拟合直线yxOmaxL0y..SFy图最小二乘线性度具体方法*:由式(1),(2)化简得(3)×n,(4)×得02112niiiiniixbkxyvk012112niiiniibkxyvb01121niiniiniiixbxkxy011nbxkyniiniiniix101121niiniiniiixnbxnkyxn012111niiniiniiniixnbxkxy(1)(2)(3)(4)(5)(6)(5)-(6)得(3)×,(4)×得(7)-(8)得2112111niiniiniiniiniiixxnyxyxnk02111211niiniiniiniiniiixbxxkxxy012121121niiniiniiniiniixnbxxkxy211211112niiniiniiiniiniiniixxnyxxyxbniix1niix12(7)(8)此外,拟合直线的斜率k和截距b也可由以下两式求得:式中,(推导从略)特点:拟合精度高,在数据较多的情况下可由计算机处理,但其拟合出的直线与标定曲线的最大偏差绝对值不一定最小,最大正负偏差的绝对值也不一定相等。例:图中最小二乘拟合直线偏低,使,从而使估计值偏大。niiniiixxyyxxk121xkybniixnx11niiyny11maxmaxLL最小二乘拟合直线yxOmaxLmaxL4.最佳直线线性度(独立线性度)以所谓“最佳直线”作拟合直线,以保证传感器正反行程校准曲线对该直线的正负偏差相等并且最小。图中:特点:拟合精度最高。通常,“最佳直线”可用图解法或通过计算机解算来获得。当标定曲线(或平均校准曲线)为单调曲线,且测量上、下限处的正、反行程校准数据的算术平均值相等时,“最佳直线”可采用端点连线平移来获得,有时称该法为端点平行线法。maxmaxLL拟合直线yxOmaxLmaxL拟合直线yxOmaxLmaxL图最佳直线线性度端点平行线法二.迟滞误差(回差)传感器或检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试过程中,对应于同一输入量,输出量往往有差别,这种现象称为迟滞。产生原因:装置内的弹性元件、磁性元件以及机械部分的摩擦、间隙、积塞灰尘等。迟滞大小常用全量程中最大迟滞与满量程输出平均值之比的百分数(引用误差)表示:式中,为输出值在正反行程中的最大差值。%100..maxSFnHyHrmaxHmaxH..SFyyxOmaxH迟滞误差三.重复性误差(最大引用随机不确定度)现象:多次重复测试时,在同是正行程或同是反行程中,对应同一输入的输出量不同。重复性:传感器或系统在同一工作条件下,输入量按同方向作全量程连续多次变动时,所得特性曲线之间的一致程度。如果用曲线中最大重复差值定义重复性误差,则因标定的循环次数不同使其最大偏差值不同。因此不可靠。重复性误差为随机误差,可定义如下:式中——为重复性误差;——各测量点极限误差的最大值——全部校准点正行程与反行程输出值的标准偏差中之最大值;k——置信系数。说明:在校准时,若有m个校准点,正反行程共可求得2m个σ,应取其中最大的,计算重复性误差。%100%100..max..maxSFSFnRykyryxOmaxnRrmaxmaxmax标准偏差σ的计算方法*(1)贝赛尔公式法:式中:yi是某校准点的输出值;是输出值的算术平均值;n:测量次数。(2)极差法:极差:指某一校准点校准数据的最大值与最小值之差。计算标准偏差的公式为:式中:Wn是极差;dn极差系数,其值与测量次数n有关,查表可得。极差系数表采用上述方法时,若有m个校准点,正反行程共可求得2m个,一般取其中最大者计算重复性误差。iy1)(12nyyniiin2345678910dn1.411.912.242.482.672.882.963.083.18nndW四.灵敏度(K或S)定义:输出量增量与被测输入量增量之比。或说明:1°非线性系统的K不为常数,K用dy/dx表示;2°灵敏度不是越大越好,灵敏度越大,系统稳定性越差。3°有时用到相对灵敏度概念:输出变化量Δy与被测量的相对变化率Δx/x之比:*灵敏度的单位问题:如何理解mV/V,V/V/mm?五.分辨力系统在规定测量范围内所能检测出输入量的最小变化量。有时用该值相对满量程输入值之百分数表示,这时称为分辨率。注意区分:分辨力:如1mV分辨率:如0.1%%100xxySrxyKxyS六.量程又称“满度值”,表征传感器或系统能承受最大输入量的能力,其数值是测量系统示值范围上、下限之差的模。当输入量在量程范围以内时,测量系统正常工作,并保证预定的性能。七.零位*当输入量为零时,系统的输出量不为零的数值。零位值应从测量结果中设法消除。八.阈值*(灵敏阈、灵敏限)使输出端产生可测变化量的最小输入量,即零位附近的分辨力。有时在零位附近有严重的非线性,形成所谓的“死区”,则可将死区的大小作为阈值;更多情况下,阈值主要取决于噪声大小,因而有时只给出噪声电平即可。比较:分辨力--最小的可测输入变化量。阈值--最小的可测输入量。死区噪声电平图死区与噪声电平九.稳定性又称长期稳定性,即传感器或系统在相当长时间内保持其性能的能力。一般以室温条件下经过一规定的时间间隔后,系统输出与起始标定时的输出之间的差异来表示,有时也用标定的有效期来表示。十.漂移*在一定时间间隔内,检测系统输出量存在着有与被测输入量无关的,不需要的变化。常用指标:零点(零位)漂移;灵敏度漂移。时漂(零点或灵敏度随时间变化);温漂(温度变化引起的漂移)。十一.静态误差(精确度)满量程内系统任一点的输出相对其理论值的可能偏离(逼近)程度—属于评价静态性能的综合指标,表示采用该传感器或系统作静态测量时所得数值的不确定度。一般用方和根或代数和法计算。用重复性、线性度、迟滞三项的方和根或简单代数和表示:或当一个传感器或测量系统设计完成并实际标定后,人们有时以工业上仪表精度的定义给出其精度,也即以最大引用误差来度量。222RHlSeeee)(RHLSeeee小结•基本功能特性---决定系统的工作能力•精度特性---决定系统在什么程度上能完成所要作的测量衡量传感器基本功能特性的指标--量程(测量范围)、灵敏度、分辨力(率)、动态范围(跨度与绝对分辨力之比);精度特性指标--线性度、重复性、迟滞、死区、漂移、稳定性、精确度。2.3.2动态特性1.传感器动态分析的特殊性*测试动态被测量时,要求传感器不仅能精确测量被测信号幅值大小,还包括其随时间变化过程的波形。要求传感器:能迅速、准确和无失真地再现被测信号随时间变化的波形,使输出与
本文标题:传感器的基本特性与指标
链接地址:https://www.777doc.com/doc-6294928 .html