您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 2019年全国中考数学真题《二次根式》分类汇编解析
..2019年全国中考数学真题《二次根式》分类汇编解析二次根式考点一、二次根式(初中数学基础,分值很大)1、二次根式式子)0(aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。4、二次根式的性质(1))0()(2aaa)0(aa(2)aa2)0(aa(3))0,0(babaab(4))0,0(bababa5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。一、选择题1.(2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.2.计算3﹣2的结果是()A.B.2C.3D.63.(2017河南3分)下列计算正确的是()..A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2D.(﹣a3)2=a54.(2017·重庆市B卷·4分)若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠25.(2017·四川内江)在函数y=34xx中,自变量x的取值范围是()A.x>3B.x≥3C.x>4D.x≥3且x≠46.(2017·四川南充)下列计算正确的是()A.=2B.=C.=xD.=x7.(2017·黑龙江齐齐哈尔·3分)下列算式①=±3;②=9;③26÷23=4;④=2017;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.8.(2017·湖北荆门·3分)要使式子有意义,则x的取值范围是()A.x>1B.x>﹣1C.x≥1D.x≥﹣19.(2017·内蒙古包头·3分)下列计算结果正确的是()A.2+=2B.=2C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+110.(2017·山东潍坊·3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+bB.2a﹣bC.﹣bD.b11.(2017·四川眉山·3分)下列等式一定成立的是()A.a2×a5=a10B.C.(﹣a3)4=a12D.二、填空题1.(2017·广西桂林·3分)若式子1x在实数范围内有意义,则x的取值范围是.2.(2017·贵州安顺·4分)在函数21xxy中,自变量x的取值范围是.3.(2017·黑龙江哈尔滨·3分)计算18-221的结果是.4.(2017广西南宁3分)若二次根式有意义,则x的取值范围是.5.(2017·吉林·3分)化简:﹣=...6.(2017·内蒙古包头·3分)计算:6﹣(+1)2=.7.(2017·青海西宁·2分)使式子有意义的x取值范围是.8.(2017·山东潍坊·3分)计算:(+)=.三、解答题1.(2017·四川攀枝花)计算;+20170﹣|﹣2|+1.2.(2017·四川南充)计算:+(π+1)0﹣sin45°+|﹣2|3.(2017·四川泸州)计算:(﹣1)0﹣×sin60°+(﹣2)2.4.(2017·四川内江)(7分)计算:|-3|+3·tan30°-38-(2017-π)0+(12)-1.5.(2017·四川宜宾)(1)计算;()﹣2﹣(﹣1)2017﹣+(π﹣1)0..6.(2017·广西桂林·8分)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式))()((cpbpapps(其中a,b,c是三角形的三边长,2cbap,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r...答案二次根式一、选择题1.(2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】根据化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【解答】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C2.计算3﹣2的结果是()A.B.2C.3D.6【考点】二次根式的加减法.【分析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.3.(2017河南3分)下列计算正确的是()A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;合并同类项;幂的乘方与积的乘方.【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;..故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.4.(2017·重庆市B卷·4分)若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2【考点】二次根式有意义的条件.【专题】计算题;实数.【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A【点评】此题考查了二次根式有意义的条件,二次根式性质为:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(2017·四川内江)在函数y=34xx中,自变量x的取值范围是()A.x>3B.x≥3C.x>4D.x≥3且x≠4[答案]D[考点]二次根式与分式的意义。[解析]欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx≥≠解得x≥3且x≠4.故选D.6.(2017·四川南充)下列计算正确的是()A.=2B.=C.=xD.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键...7.(2017·黑龙江齐齐哈尔·3分)下列算式①=±3;②=9;③26÷23=4;④=2017;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【考点】概率公式.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2017,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.8.(2017·湖北荆门·3分)要使式子有意义,则x的取值范围是()A.x>1B.x>﹣1C.x≥1D.x≥﹣1【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.9.(2017·内蒙古包头·3分)下列计算结果正确的是()A.2+=2B.=2C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+1【考点】二次根式的乘除法;幂的乘方与积的乘方;完全平方公式.【分析】依次根据合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.【解答】解:A、2+不是同类二次根式,所以不能合并,所以A错误;..B、=2,所以B正确;C、(﹣2a2)3=﹣8a6≠﹣6a6,所以C错误;D、(a+1)2=a2+2a+1≠a2+1,所以D错误.故选B10.(2017·山东潍坊·3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+bB.2a﹣bC.﹣bD.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.11.(2017·四川眉山·3分)下列等式一定成立的是()A.a2×a5=a10B.C.(﹣a3)4=a12D.【分析】依次根据幂的乘法,算术平方根的运算,幂的乘方,二次根式的化简判断即可.【解答】解:A、a2×a5=a7≠a10,所以A错误,B、不能化简,所以B错误.C、(﹣a3)4=a12,所以C正确,D、=|a|,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了幂的乘法,算术平方根的运算,幂的乘方,二次根式的化简,熟练运用这些知识点是解本题的关键.二、填空题1.(2017·广西桂林·3分)若式子1x在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,..∴x﹣1≥0,解得x≥1.故答案为:x≥1.2.(2017·贵州安顺·4分)在函数21xxy中,自变量x的取值范围是x≤1且x≠﹣2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2017·黑龙江哈尔滨·3分)计算18-221的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.4.(2017广西南宁3分)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.5.(2017·吉林·3分)化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.6.(2017·内蒙古包头·3分)计算:6﹣(+1)2=﹣4.【考点】二次根式的混合运算...【分析】首先化简二次根式,进而利用完全平方公式计算,求出答案.【解答】解:原式=6×﹣(3+2+1)=2﹣4﹣2=﹣4.故答案为:﹣4.7.(2017·青海西宁·2分)使式子有意义的x取值范围是x≥﹣1.【考点】二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.8.(2017·山东潍坊·3分)计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解
本文标题:2019年全国中考数学真题《二次根式》分类汇编解析
链接地址:https://www.777doc.com/doc-6303502 .html