您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 高考专项训练21.数列大题专项训练
一.解答题(共30小题)1.(2012•上海)已知数列{an}、{bn}、{cn}满足.(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有bn≥bk;(3)设,.当b1=1时,求数列{bn}的通项公式.2.(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.3.(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤ak≤.4.(2011•浙江)已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且,,成等比数列.(Ⅰ)求数列{an}的通项公式及Sn;(Ⅱ)记An=+++…+,Bn=++…+,当a≥2时,试比较An与Bn的大小.5.(2011•上海)已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*).将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,cn,…(1)写出c1,c2,c3,c4;(2)求证:在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;(3)求数列{cn}的通项公式.6.(2011•辽宁)已知等差数列{an}满足a2=0,a6+a8=﹣10(I)求数列{an}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{an}唯一,求a的值;(2)是否存在两个等比数列{an},{bn},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.(I)求数列{bn}的通项公式;(II)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.9.(2011•广东)设b>0,数列{an}满足a1=b,an=(n≥2)(1)求数列{an}的通项公式;(4)证明:对于一切正整数n,2an≤bn+1+1.10.(2011•安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.(I)求数列{an}的通项公式;(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{an}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=(4﹣an)qn﹣1(q≠0,n∈N*),求数列{bn}的前n项和Sn.13.(2010•四川)已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设bn=a2n+1﹣a2n﹣1(n∈N*),证明:{bn}是等差数列;(3)设cn=(an+1﹣an)qn﹣1(q≠0,n∈N*),求数列{cn}的前n项和Sn.14.(2010•陕西)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{an}的通项;(Ⅱ)求数列{2an}的前n项和Sn.15.(2010•宁夏)设数列满足a1=2,an+1﹣an=3•22n﹣1(1)求数列{an}的通项公式;(2)令bn=nan,求数列的前n项和Sn.16.(2010•江西)正实数数列{an}中,a1=1,a2=5,且{an2}成等差数列.(1)证明数列{an}中有无穷多项为无理数;(2)当n为何值时,an为整数,并求出使an<200的所有整数项的和.17.(2009•陕西)已知数列{an}满足,,n∈N×.(1)令bn=an+1﹣an,证明:{bn}是等比数列;(2)求{an}的通项公式.18.(2009•山东)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记bn=n∈N*求数列{bn}的前n项和Tn.19.(2009•江西)数列{an}的通项,其前n项和为Sn,(1)求Sn;(2),求数列{bn}的前n项和Tn.20.(2009•辽宁)等比数列{an}的前n项和为sn,已知S1,S3,S2成等差数列,(1)求{an}的公比q;(2)求a1﹣a3=3,求sn.21.(2009•湖北)已知数列{an}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{an}的通项公式;(2)数列{an}和数列{bn}满足等式an=(n∈N*),求数列{bn}的前n项和Sn.22.(2009•福建)等比数列{an}中,已知a1=2,a4=16(I)求数列{an}的通项公式;(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.23.(2009•安徽)已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2﹣bn(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设cn=an2•bn,证明:当且仅当n≥3时,cn+1<cn.24.(2009•北京)设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{bm}的前2m项和公式;(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{xn}的首项x1=3,通项xn=2np+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{xn}前n项和Sn的公式.26.(2008•四川)设数列{an}的前n项和为Sn=2an﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{an+1﹣2an}是等比数列;(Ⅲ)求{an}的通项公式.27.(2008•四川)在数列{an}中,a1=1,.(Ⅰ)求{an}的通项公式;(Ⅱ)令,求数列{bn}的前n项和Sn;(Ⅲ)求数列{an}的前n项和Tn.28.(2008•陕西)已知数列{an}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和Sn.29.(2008•辽宁)在数列{an},{bn}是各项均为正数的等比数列,设.(Ⅰ)数列{cn}是否为等比数列?证明你的结论;(Ⅱ)设数列{lnan},{lnbn}的前n项和分别为Sn,Tn.若a1=2,,求数列{cn}的前n项和.30.(2008•辽宁)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论;(2)证明:.答案与评分标准一.解答题(共30小题)1.(2012•上海)已知数列{an}、{bn}、{cn}满足.(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有bn≥bk;(3)设,.当b1=1时,求数列{bn}的通项公式.考点:数列递推式;数列的函数特性。专题:计算题;分类讨论。分析:(1)先根据条件得到数列{bn}的递推关系式,即可求出结论;(2)先根据条件得到数列{bn}的递推关系式;进而判断出其增减性,即可求出结论;(3)先根据条件得到数列{bn}的递推关系式;再结合叠加法以及分类讨论分情况求出数列{bn}的通项公式,最后综合即可.解答:解:(1)∵an+1﹣an=3,∴bn+1﹣bn=n+2,∵b1=1,∴b2=4,b3=8.(2)∵.∴an+1﹣an=2n﹣7,∴bn+1﹣bn=,由bn+1﹣bn>0,解得n≥4,即b4<b5<b6…;由bn+1﹣bn<0,解得n≤3,即b1>b2>b3>b4.∴k=4.(3)∵an+1﹣an=(﹣1)n+1,∴bn+1﹣bn=(﹣1)n+1(2n+n).∴bn﹣bn﹣1=(﹣1)n(2n﹣1+n﹣1)(n≥2).故b2﹣b1=21+1;b3﹣b2=(﹣1)(22+2),…bn﹣1﹣bn﹣2=(﹣1)n﹣1(2n﹣2+n﹣2).bn﹣bn﹣1=(﹣1)n(2n﹣1+n﹣1).当n=2k时,以上各式相加得bn﹣b1=(2﹣22+…﹣2n﹣2+2n﹣1)+[1﹣2+…﹣(n﹣2)+(n﹣1)]=+=+.∴bn==++.当n=2k﹣1时,=++﹣(2n+n)=﹣﹣+∴bn=.点评:本题主要考察数列递推关系式在求解数列通项中的应用.是对数列知识的综合考察,属于难度较高的题目.2.(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.考点:等比数列的通项公式;数列的求和。专题:计算题。分析:(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn.解答:解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2=2×q+4解得q=2或q=﹣1∵q>0∴q=2∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题.3.(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤ak≤.考点:数列与不等式的综合;数列递推式。专题:综合题。分析:(Ⅰ)由题意,得S22=﹣2S2,由S2是等比中项知S2=﹣2,由此能求出S2和a3.(Ⅱ)由题设条件知Sn+an+1=an+1Sn,Sn≠1,an+1≠1,且,,由此能够证明对k≥3有0≤an﹣1≤.解答:解:(Ⅰ)由题意,得S22=﹣2S2,由S2是等比中项知S2≠0,∴S2=﹣2.由S2+a3=a3S2,解得.(Ⅱ)证明:因为Sn+1=a1+a2+a3+…+an+an+1=an+1+Sn,由题设条件知Sn+an+1=an+1Sn,∴Sn≠1,an+1≠1,且,又从而对k≥3,有0≤ak≤.点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.4.(2011•浙江)已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且,,成等比数列.(Ⅰ)求数列{an}的通项公式及Sn;(Ⅱ)记An=+++…+,Bn=++…+,当a≥2时,试比较An
本文标题:高考专项训练21.数列大题专项训练
链接地址:https://www.777doc.com/doc-6316020 .html