您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > [学士]三角形角钢屋架设计计算书
三角形角钢屋架设计1、设计资料屋架跨度18m,屋架间距6m,屋面坡度1/3,屋面材料为石棉水泥中波或小波瓦、油毡、木望板。薄壁卷边Z形钢檩条,檩条斜距为0.778m,基本风压为0.35kN/m2,雪荷载为0.20kN/m2。钢材采用Q235-B,焊条采用E43型。2、屋架形式、几何尺寸及支撑布置屋架形式、几何尺寸及支撑布置如图7-35所示,上弦节间长度为两个檩距,有节间荷载。上弦横向水平支撑设置在房屋两端及伸缩缝处的第一开间内,并在相应开间屋架跨中设置垂直支撑,在其余开间屋架下弦跨中设置一道通长的水平系杆。上弦横向水平支撑在交叉点处与檩条相连。为此,上弦杆在屋架平面外的计算长度等于其节间几何长度;下弦杆在屋架平面外的计算长度为屋架跨度的一半。图7-35屋架形式、几何尺寸及支撑布置3、荷载(对水平投影面)(1)恒载标准值石棉瓦0.2kN/m2/0.949=0.21kN/m2油毡、木望板0.18kN/m2/0.949=0.19kN/m2檩条、屋架及支撑0.20kN/m2合计0.6kN/m2(2)活荷载活荷载与雪荷载中取大值0.30kN/m2因屋架受荷水平投影面积超过60m2,故屋面均布活荷载可取为(水平投影面)0.30kN/m2。(3)风荷载基本风压0.35kN/m2计算中未考虑风压高度变化系数。(4)荷载组合①恒载+活荷载②恒载+半跨活荷载③恒载+风荷载(5)上弦的集中荷载及节点荷载,见图7-36、7-37及表7-6。图7-36上弦集中荷载图7-37上弦节点荷载表7-6上弦集中荷载及节点荷载表荷载形式荷载分类集中荷载(设计值)P/(kN)节点荷载(设计值)P=2P/(kN)备注恒载3.1896.378189.3m6103m778.0kN/m6.02.12'PkN活荷载1.8603.270860.1m6103m778.0kN/m3.04.12'PkN恒载+活荷载5.04910.089049.5kN860.1kN189.3'PkN(6)上弦节点风荷载设计值,见图7-38。图7-38上弦节点风荷载①风荷载体型系数背风面μs=-0.5迎风面μs=-0.47≈-0.5(见建筑结构荷载规范)②上弦节点风荷载W=1.4×(-0.5)×0.35kN/m2×1.556m×6m=-2.287kN4、内力计算(1)内力及内力组合见表7-7。表7-7屋架杆件内力组合表杆件名称杆件编号恒载及活荷载半跨活荷载风荷载内力组合(kN)内力系数恒载内力(kN)活荷载内力(kN)内力系数半跨活载内力(kN)内力系数风荷载内力(kN)恒载+活荷载恒载+半跨活荷载恒载+风荷载12345672+32+52+7上弦杆1-17.39-110.91-64.69-12.65-47.0616.5537.85-175.6-157.97-73.062-16.13-102.88-60.00-11.40-42.4115.5035.45-162.88-145.29-67.433-16.76-106.90-62.35-12.05-44.8316.5537.85-169.25-151.73-69.054-16.44-104.85-61.16-11.70-43.5216.5537.85-166.01-148.37-67.005-15.18-96.82-56.47-10.45-38.8715.5035.45-153.29-135.69-61.376-15.81-100.84-58.81-11.10-41.2916.5537.85-159.65-142.13-62.99下弦杆716.50105.2461.3812.0044.64-17.34-39.66166.62149.8865.58813.5086.1050.229.0033.48-14.32-32.75136.32119.5853.3599.0057.4033.484.5016.74-9.48-21.6890.8874.1435.72腹杆10-1.34-8.55-4.99-1.34-4.991.413.23-13.54-13.54-5.3211-2.85-18.18-10.60-2.85-10.603.006.86-28.78-28.78-11.32123.0019.1311.163.0011.16-3.16-7.2330.2930.2911.90134.5028.7016.744.5016.74-4.47-10.8445.4445.4417.86147.5047.8427.97.5027.90-7.9-18.0775.7475.7429.77150.000.000.000.000.000.000.000.000.000.00注:①内力系数由《建筑结构静力计算手册》查得,内力为相应的节点荷载P或W乘以内力系数;②屋架下弦杆及受拉腹杆在恒载及风荷载组合作用下,未出现内力变号,故为恒载+活荷载控制。(2)上弦杆弯矩计算端节间跨中正弯矩:49.1862.18.0)m555.1103kN049.541(8.048.08.0'01lPMMkN.m中间节间跨中正弯矩和中间节点负弯矩:117.1mkN862.16.06.002MMkN.m5、杆件截面选择(1)上弦杆整个上弦不改变截面,按最大内力计算。杆1内力N=-175.6kN,M1x=1.49kN.m,M2x=1.117kN.m。选用2∟70×6,A=16.32cm2,W1x=38.74cm3,W2x=14.96cm3,ix=2.15cm,iy=3.11cm。长细比150][3.72cm15.2cm5.155xoxxil150][50cm11.3cm5.155yoyyil825.0736.06.56cm6.0cm5.155cm7475.0150)475.01(9.12cm7cm5.15558.058.07.11mm6mm70222244224yxyzxoyyyzoybtlbbltb,类截面),查表得(、由05.5773.721.1mm1032.16N/mm102061.122223222'xExEANkN塑性系数γx1=1.05,γx2=1.2a、弯矩作用平面内的稳定性此端节间弦杆相当于规范中两端支承的杆件,其上作用有端弯矩和横向荷载并为异号曲率的情况,故取等效弯矩系数βmx=0.85用跨中最大正弯矩Mx1=1.49kN.m验算,代入公式得:2233623'111N/mm215N/mm4.187kN05.577kN6.1758.01mm1074.3805.1mmN1049.185.0mm1632736.0N106.1758.01.fNNWMANExxxxmxx对于这种组合T形截面压弯杆,在弯矩的效应较大时,可能在较小的翼缘一侧因受拉塑性区的发展而导致构件失稳,补充验算见下式:2233623'221N/mm215N/mm3.6kN05.577kN6.17525.11mm1096.142.1mmN1049.185.0mm1632N106.17525.11.fNNWMANExxxxmx显然另一侧不控制构件平面内的失稳。故平面内的稳定性得以保证。b、弯矩作用平面外的稳定性由于λy=50120,所以梁的整体稳定系数可由下式计算:915.0500017.012350017.01yybf等效弯矩系数βtx=0.85用跨中最大正弯矩Mx1=1.49kN.m验算,代入公式得:2233622311N/mm215N/mm2.166mm1074.38915.0mmN1049.185.01mm1032.16825.0N106.175.fWMANxbxtxy根据支撑布置情况,可知上弦节点处均有侧向支承以保证其不发生平面外失稳。因此,可不必验算节点处的平面外稳定,只需验算其强度。c、强度验算上弦杆节点“2”处(见图7-39)的弯矩较大,且W2x又比较小,因此截面上无翼缘一边的强度,按下式验算(An=A):22336223minN/mm215N/mm8.169mm1096.142.1mmN10117.1mm1032.16N106.175fWMANxxxn(2)下弦杆下弦也不改变截面,按最大内力计算。杆7的轴心力Nmax=166.62kN。选用2∟56×4,A=8.78cm2,ix=1.73cm,iy=2.52cm。长细比400][4.227cm73.1cm4.393xoxxil400][351cm52.2cm885yoyyil强度验算8.189mm1078.8N1062.166223maxnANN/mm2f(3)腹杆杆10内力N=-13.54kN。选用∟36×4,A=2.756cm2,iy=0.7cm。长细比200][4.141cm7.0cm1109.07.09.0lilyoyy294.02003.154cm4.0cm99cm6.385.014.141)85.01(9.14cm6.3cm9954.054.09mm4mm36222244224类截面),查表得(由btlbbltbyzoyyyzoy222223N/mm6.174N/mm215812.0N/mm1.167mm10756.2294.0N1054.13fAN其中0.812为单面连接单角钢的强度折减系数,见附表1-4。上述计算,也可采用表格形式进行,现将上述计算以及其他腹杆的计算一并列于表7-8。图7-39节点编号表7-8屋架杆件截面选用表杆件名称杆件编号内力计算长度(cm)截面规格(mm)长细比稳定系数计算应力(N/mm2)N(kN)M1(kN.m)l0xl0yλxλy(λyz)φxφyφbM2(kN.m)上弦杆1-175.61.491.117155.5155.52∟70×672.350(56.6)0.7360.8250.915187.4下弦杆7166.62245.88852∟56×4189.88136.32245.8885990.88393.4885228351腹杆10-13.540.9×110=99∟36×4141(154)0.3410.294167.111-28.780.8×156=1241562∟30×4138104(105)0.353179.11230.290.8×246=1972462∟30×4219165.166.51345.442464922∟30×427333099.821475.742464922∟30×4273330166.4150.000.9×295=266╇36×41936、节点设计节点编号见图7-39。(1)一般杆件连接焊接设焊缝厚度hf=4mm,焊缝长度可由公式计算列于表7-9。表7-9屋架杆件连接焊缝表杆件名称杆件编号杆件内力(kN)肢背焊缝肢尖焊缝备注lw(mm)hf(mm)lw(mm)hf(mm)下弦杆7166.621504704焊缝长度已考虑施焊时起弧或落弧的影响;杆件10的焊缝,已按规范规定考虑了焊缝强度折减系数0.85腹杆10-13.5445445411-28.784544541230.294544541345.445044541475.74754454(2)节点“1”①支座底板厚度支座底板尺寸,如图7-40所示。支座反力R=6P+1.15×0.74×6=6×10.098+1.15×0.74×6=65.69kN设a=b=12cm,a1=2×12cm=16.9cm,b1=a1/2=8.45cm底板的承压面积An=24cm×24cm-3.14×22cm2-2×4cm×5cm=523cm2板下压
本文标题:[学士]三角形角钢屋架设计计算书
链接地址:https://www.777doc.com/doc-6340646 .html