您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 增压器压气机级多目标气动优化设计
315201010ChineseInternalCombustionEngineEngineeringVol.31No.5October.2010:20090303:(1968-),,,,Email:kkk123@sina.com:1000-0925(2010)05-0041-063100971,2,3(1.,262711;2.(),100081;3.,102206)MultiObjectiveAerodynamicOptimizationDesignforCompressorStageofTurbochargerWANGHang1,GUORan2,KANGShun3(1.ShouguangKangyueTurbochargerCo.,Ltd.,Weifang262711,China;2.NUMECABeijingFluidEngineeringCo.,Ltd.,Beijing100081,China;3.KeyLaboratoryofCMCPPE,NorthChinaElectricPowerUniversity(Beijing),Beijing102206,China)Abstract:Toenhanceperformanceoftheturbochargercompressorstage,theimpellerprofileoptimizeddesignwasperformedbasedonsteadynumericalsimulationusingFINETM/Design3Dsoftware.Theefficiency,pressureratioandpowerweretakenasoptimizedobjectives.Theoptimizationprocedureincludedparameterizedmodeling,3Dviscousflowaerodynamicnumericalsimulation,designofexperiment,adoptionofgeneticalgorithmandartificialneuralnetworktechnique.Totalpressurelossinvolutewasdecreasedbyadjustingthevelocitycirculation.Comparedwiththeoriginal,totalefficiency,pressureratiooftheoptimizedturbochargerandtheenginepowerriserespectivelyby6%,0.11and0.5kW.:针对某型号增压器压气机级的叶轮和蜗壳进行稳态分析改进,采用NUMECA公司的FINETM/Design3D软件对叶轮型线进行优化设计,以效率压比功率为优化目标,整个过程贯穿了参数化建模,三维黏性气动数值分析试验设计方法遗传算法和神经网络技术;通过调整蜗壳环量来降低流动损失对优化前后压气机的整体性能进行了比较,结果表明:整机效率提高了6%,压比提高了0.11,功率增加了0.5kW:;;;;Keywords:ICengine;turbocharger;centrifugalcompressor;multiobjectiveoptimization;parameterizedmodeling:TK474:A0,,,,,,Hirsch[1],20105[2][3],,11.1,,66;0.45mm11FINETM/TurboIGGTM/AutoGridTM,O4H,,20;IGGTM691.2SparlartAllmaras,NS,RungeKutta,510-5m2/s,CFL31DNonReflecting1.3AVLBoost,,137000r/min,,2FINETM/Design3DFINETM/Design3DNUMECA2002,AutoBladeAutoblade_FittingCFDCFD_WizardDatabase_GenerationOptimizition5/,CFD_WizardAutoBladeFINETM/TurboCFD,22,3:(1):(artificialneuralnetwork);(2):(geneticalgorithm)(gradientmethod)(simulatedannealing)(randomwalk),;(3):FINETM/Turbo,,,,,,33.1,,,()=!Pi,:Pi=Wi∀Qimp,i-QQref,ik(1),W,[5];Qimp;Q;Qref;k,21∀42∀2010511322-0.3523.2,;,5,4Bezier,23,4,L1;L2;D1;D2;B1;B2;Hnn+112283140440311758423.3,4%,,,CFturbo[4]56A/R44.1,,8S8,68.83%,8.77%;1.7017,0.11;0.5kW74.28910%25%50%75%90%:,,,30%,,,M;T∀43∀201054.30.07kg/s1090%B2B,,(reducedpressure)[6]pr:pr=p/[(T+2r22Cp)/T*]-1(2)T*=T+(W2-2r2)/2Cp(3),p;T;r;;;Cp,,,11~14:,,,,,,,,∀44∀2010515~17,∀45∀201051790%5(1),,6%,0.11,0.5kW(2),(3),DOE,:[1]DemeulenaereA,LigoutA,HirschC.Applicationofmultipointoptimizationtothedesignofturbomachineryblades[C].ASMEGT200453110,2004.[2],.[J].,2008,29(2):465470.ChenZP,YuanX.Aerodynamicsoptimumdesignofaxialcompressorbladesbasedonnumericaloverallperformancecalculation[J].JournalofEngineeringThermophysics,2008,29(2):465470.[3],,,.[J].,2008,29(8):526532.WenFB,WangST,FengGT,etal.Multilevelturbineaerodynamicoptimizationdesignsystemwithcoolantmixing[J].JournalofEngineeringThermophysics,2008,29(8):526532.[4]CFDNetworkEngineering.CFturbousermanual[R].2006.[5]NUMECAInternational.FINETM/design3Dusermanual[R].2007.[6]KangS,HirschC.Numericalsimulationandtheoreticalanalysisofthe3Dviscousflowincentrifugalimpellers[J].JournalTASKQuarterly,2001,5(4):455479.(:)∀46∀
本文标题:增压器压气机级多目标气动优化设计
链接地址:https://www.777doc.com/doc-637557 .html