您好,欢迎访问三七文档
2.1解:a刚质产单设为)度即是使点生位位移所需施加的力,k则当质产时,:点生位移Δ,有:KΔ=K1Δ+K2刚Δ;所以,等效度K=K1+K2()()12sIpWkuukkuuWmuuWptuδδδδδδδ−==+−==ii虚由功原理得:()()12kkumupt++=iib)112212kkk∆=∆=∆⎧⎨∆+∆=∆⎩联立解得:1212kkkkk=+与a)同理,得:()1212kkumuptkk+=+iiic)()3312113kkkkk∆=∆⎧⎪∆=+∆⎨⎪∆+∆=∆⎩联立解得:312123()kkkkkkk+=++与a)同理,得:()312123()kkkumuptkkk++=++iii2.2解:a刚单载)先求框架度,用位荷法求δ1112h12h12h12h所以,31111112222236cchhhhEIEIδ⎛⎞⎛⎞=×××××=⎜⎟⎜⎟⎝⎠⎝⎠(其中EIb=∝,故1/EIb=0)∴31161cEIkhδ==()36ckIpEIWkuuuuhWmuuWptuδδδδδδδ−==−==ii虚由功原理:0kIpδδδ++=得:()36cEIumupth+=iib)33131241684119314ccEIEkhh×+=×=×+I运动∴方程:()316819cEIumupth+=ii2.3解:()222224()339111339149243342424115222sDIpWkuukuuWCuuCuullrlluullWrllWptuδδδδδδπuulruuδδπδπδδ−==⎛⎞−==⎜⎟⎝⎠⎛⎞⎡⎤⎜⎟⎛⎞⎛⎞−=++=⎢⎥⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎢⎥⎜⎟⎣⎦⎝⎠=iiiiiiiiδ椭圆纸注意:①平行于面放置题须虑椭圆为时②此不考板的重力做功。因列方程,u时静为以平衡位置零点,重力一弹参见教直被簧力所抵消。(材P32响释重力影的解)虚由功原理:0sIDpδδδδ+++=得:241149991152kuCulrupπ++=iii义质广量21491152Mlrπ=义刚广度K:4/9K义广阻尼C:1/9C义载广荷:P2.4解:()2222211122222221221121123212212111121cossinsin2sIpWkqbqWmLqqmqqqmqqmqqqmqqqqWmgqqmgqqqmgLqqδδ1δδδδδδδδδ−=−−=−+++=−−iiiiiiiiiiδ由0sIpδδδ++=得:22212111222121222222111020sinsin32cos00mqqqqmLmqmgqqmgLqqqmgqkbmkmq⎡⎤⎡⎤11⎧⎫⎧⎫+−−⎧⎫⎪⎪⎪⎪⎢⎥⎢⎥+=⎨⎬⎨⎬⎨⎬⎢⎥⎢⎥⎩⎭⎪⎪⎪⎪+−⎢⎥⎢⎥⎩⎭⎩⎭⎣⎦⎣⎦iiiiiiii2.5解:()122122222sinsDIpWkuuWCuuWmuumuLuLmuumuumLumLumLWmgLδδδδδδθδθδδθδδθθδθδθ−=−=⎛⎞−=+++⎜⎟⎝⎠=++++=−iiiiiiiiiiiiiiiiiiδθ虚功原理:0sIDpδδδδ+++=得:1222222000sin0000mmmLuCukumLmLmgLθθθθ⎧⎫⎧⎫+⎡⎤⎧⎡⎤⎡⎤⎧⎫⎪⎪⎪⎪++=⎨⎬⎨⎬⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎩⎭⎣⎦⎩⎪⎪⎪⎪⎩⎭⎩⎭iiiiiii⎫⎭2.6解:()121212122122222111224sinsDIpWkuukuuWCuuCuuCuuCuuWmuumuLuLmuumuumLumLumLWmgLδδδδδδδδδθδθδδθδδθθδθδθδθ−=+⎛⎞⎛⎞−=+×=+⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞−=+++⎜⎟⎝⎠=++++=−iiiiiiiiiiiiiiiiiiiiδi虚功原理:0sIDpδδδδ+++=得:1221212222210004sin0000mmmLuukkuCCmLmLmgLθθθθ⎡⎤⎧⎫⎧⎫+++⎡⎤⎧⎡⎤⎧⎫⎪⎪⎪⎪⎢⎥++=⎨⎬⎨⎬⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥−⎣⎦⎩⎭⎣⎦⎩⎪⎪⎪⎪⎩⎭⎩⎭⎣⎦iiiiiii⎫⎭3.1解:由题可知:sTD64.02=,即sTD28.1=cmu1.3)0(=cmTuD2.2)2(−=由⎥⎦⎤⎢⎣⎡++=−)sin)0()0((cos)0()(twwuwutwuetuDDnDtwnξξ得:)2(u)0(DTu=2.21.3−=()0ue)0(2uDnTwξ−−=πξξ21−−e所以:%9.10109.03429.012==⇒=−ξξξπsradTwwDDn/938.4109.0128.12121222−×=−=−=πξπξmKNmNmwKn/5.2194/105.2194938.410903232=×=××==阻尼系数:msKNmwCn/9.96938.41090%9.10223•=××××==ξ3.2解:sradmkwn/21087510350033=××==设()twBtwAtunnsincos+=将及代入解得:()6.40=u()6.42.1=u6.4=A8.11=B()tttu2sin8.112cos6.4+=⇒()cmu4.114.2−=⇒振幅:cmBAu7.12220=+=3.3解:总刚度mKNK/5602.01120==(1)sradmkwn/36.2211256000==(2)%5.16841212==+njinIuuIjππξ(3)sradwwnD/06.22165.0136.22122=−×=−=ξ3.4解:以体系静平衡位置作为原点km−1则,共同作用的静平衡位置1m2mkgmust2=碰撞之前的速度2m222vmgh=碰撞之后:动量守恒122()(0)2mmumgh+=i即212(0)2mugmm=+ih动力方程:()()()120ststmmuuKuu′′+−+−=()122mmuKumg⇒++=ii解得:⎟⎟⎠⎞⎜⎜⎝⎛+=++=212sincosmmKwKgmtwBtwAunnn将及(0)0u=212(0)2mugmm=+ih代入解得:22122,()mgghABmkkm=−=+m于是:22212122cossin()nnnmgmgghKuwtmwtwkkmmKm⎛⎞=−++=⎜⎟⎜⎟++⎝⎠m3.5解:()[]2220211nnstdξ+⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−==当1=nww时,发生共振有:ξ210.51==stduR(1)当101=nww时,()()22211.021.0115.0×+−==ξstduR(2)由式(1),(2)可以解得%95.4=ξ3.6解:()[]()[][]22222121nnnξξ+−+=0=ξ()[]2225211nwTR×−=πnww,解得:sradwn/36.47=mKNmwKn/6.203636.4790822=×==3.7解:对于任意简支梁跨中δ−F关系:EIFl483=δ3148lEIK=⇒所以体系的刚度:mKNlEIKK/1.59514.21016.41006.29696236831=××××===−mKPust50105.41.5951267.0−×===sradmkwn/5.104545101.59513=×==sradw/10602300ππ=×=301.05.10410===πβnww01.0=ξ()[]()()10.1301.001.02301.0112112222220=××+−=+⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−==nnstd−−×=××=•=设()φ−=wtuusin0则()φ−−=′′wtwuusin20所以:加速度振幅()2225200/109.410100.5smwua−−×=××==π3.8解:(1)从图中可以看出:cmu38.00=NKu17300=mKNK/3.4551038.017302=×=⇒−(2)()()msNKuwwEnDeq/2.6347%0.71038.0103.455129.2222320•==×××××==−ππξ(3)%0.14%0.722=×==ξη3.9.解:当ωπ/0≤≤t时)sin2sin2(2]})cos[(]){cos[(2)](sin[sin1)(222200000wt−−−=+−−−+=−=∫∫τττωτωωωτωτω当ωπ/t时]sin)[sin()()sin2)sin(2(20)](sin[sin1)(2202222000t−−=−+−−=+−=∫∫ππτωτωπτπτ3.10.解:当dTt≤≤0时)cos1()](sin[1)(2000twmpdtpmtunntnn−=−=∫ωτωωτ当时dTt}cos)]({cos[0)](sin[1)(2000twTtwmpdtpmtundnnTnnd−−=+−=∫ωτωωτ3.11.解:当时,令dTtα=ndTT/(0.2,5.1,0.1,.5.0,1.0=α))2sin(sin2)]2/1/(sin[2sin2)(200αππαπωω−=−=nndnddnnTtmpTtwTTwmptu4.1解:(1)列出动平衡方程为:⎪⎪⎭⎪⎪⎬⎫=+−=−++00)(2212..2222121..11qkqkqmqkqkkqm故为静力耦联(2)列出动平衡方程为:⎪⎪⎭⎪⎪⎬⎫=++=+++00)22..22..1211..22..121(qkqmqmqkqmqmm故为动力力耦联(3)列出动平衡方程为:⎪⎪⎭⎪⎪⎬⎫=++=+++00)22..22..1211..22..121(qkqmqmqkqmqmm故为动力力耦联(4)列出动平衡方程为:⎪⎪⎭⎪⎪⎬⎫=++++=+++++++0)2()0)()222111..22221..1212111..221..121()42(2(qkhhkqhkqhmhmqhmhmqhkqkqhmhmqmm故为动力力耦联4.2解:利用虚功原理:ukuukuWs22112δδδ+=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+=llmmuuuuluuuuWI12..1..2221..2..11222δδδ由Wsδ+WIδ=0可得:0)632()63(2..1..221..2..11=+++++uuuuuuuummKmmKδδ;由、u1δu2δ为任意数方程成立,故:⎪⎪⎩⎪⎪⎨⎧=++=++0632063..1..22..2..11uuuuuummKmmK写成矩阵形式为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00200366321..2..1uuuuKKmmmm运动特征方程为:([K]-ω2[M]){φ}=0;可得:0[M]-[K]2=ω即:03266322=−−−−ωωmkmmmk⇒结构得自振频率为:.1=ω1.5925mk;.2=ω3.0764mk。设:;其中n=1,21)(2=φn代入特征方程可得:7342.2)1(1=φ;7321.0)2(1−=φ故结构的一阶振型为:{}⎭⎬⎫⎩⎨⎧=17342.21φ故结构的二阶振型为:{}⎭⎬⎫⎩⎨⎧−=17321.02φ4.4解:可知刚度:k1=k2=hEI324列出动平衡方程为:()()⎪⎭⎪⎬⎫=+−=−++ttpukukumpukukkum22212..22122121..11)(代入刚度得:()()⎪⎪⎭⎪⎪⎬⎫=+−=−+tEIEItEIEIpuhuhumpuhuhum22313..2212313..1124242448写成矩阵形式为:()()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡−−+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ttEIEIEIEIppuuhhhhuumm21213333..2.
本文标题:结构动力学习题答案
链接地址:https://www.777doc.com/doc-6377992 .html