您好,欢迎访问三七文档
当前位置:首页 > 法律文献 > 理论/案例 > 行测部分高分复习笔记
行测\申论复习要点及注意事项第一部分、数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。相减,是否二级等差。8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2特殊观察:角度图形都需要注意3,4,5,6,(7)7.直线/曲线出现时,有可能是,线条数。或者,都含曲线,都含直线,答案都不含直线,都不含曲线。线条数是,3,3,34,4,48.当出现英文字母时,有可能是笔划数,有可能是是否直线/曲线问题,又或者是相隔一定数的字母。项很多,分组。三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8隔项,是否有规律0,12,24,14,120,16(7^3-7)每个数都两个数以上,考虑拆分相加(相乘)法。87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。3,2,7/2,12/5,(12/1)通分,3,2变形为3/1,6/3,则各项分子、分母差为质数数列。64,48,36,27,81/4,(243/16)等比数列。出现三个连续自然数,则要考虑合数数列变种的可能。7,9,11,12,13,(12+3)8,12,16,18,20,(12*2)突然出现非正常的数,考虑C项等于A项和B项之间加减乘除,或者与常数/数列的变形2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。1,3,4,7,11,(18)8,5,3,2,1,1,(1-1)首尾项的关系,出现大小乱现的规律就要考虑。3,6,4,(18),12,24首尾相乘10,4,3,5,4,(-2)首尾相加旁边两项(如a1,a3)与中间项(如a2)的关系1,4,3,-1,-4,-3,(-3―(-4))1/2,1/6,1/3,2,6,3,(1/2)B项等于A项乘一个数后加减一个常数3,5,9,17,(33)5,6,8,12,20,(20*2-4)如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。157,65,27,11,5,(11-5*2)一个数反复出现可能是次方关系,也可能是差值关系-1,-2,-1,2,(-7)差值是2级等差1,0,-1,0,7,(2^6-6^2)1,0,1,8,9,(4^1)除3求余题,做题没想法时,试试(亦有除5求余)4,9,1,3,7,6,(C)A.5B.6.C.7D.8(余数是1,0,1,0,10,1)3.怪题:日期型2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3)结绳计数1212,2122,3211,131221,(311322)2122指1212有2个1,2个2.第二部分、图形推理一.基本思路:看是否相加,相减,求同,留同存异,去同相加,相加再去同,一笔划问题,笔划数,线条数,旋转,黑白相间,轴对称/中心对称,旋转,或者答案只有一个图可能通过旋转转成。视觉推理偏向奇偶项,回到初始位置.注:5角星不是中心对称二.特殊思路:1.有阴影的图形可能与面积有关,或者阴影在旋转,还有就是黑白相间。第一组,1/21/41/4第二组,1,1/2,(1/2A)两个阴影,里面逆时针转,外面顺时针转。2.交点个数一般都表现在相交露头的交点上或者一条线段穿过多边形交点数为,3,3,3第二组为3,3,(3)交点数为,1,1,1第二组为2,2,(2)但是,露头的交点还有其它情形。此题算S形,露头数,1,3,5,7,9,11,(13B),15,173.如果一组图形的每个元素有很多种,则可从以下思路,元素不同种类的个数,或者元素的个数。出现一堆乱七八遭的图形,要考虑此种可能。第一组2,4,6种元素,第二组,1,3,(5)种类,1,2,3,4(5)元素个数为4,4,44,4,(4)4.包含的块数/分割的块数出现一些乱七八遭的图形,或者出现明显的空间数,要考虑此种可能。包含的块数,1,2,3,4,5,(6,B)分割的块数为,3,3,3,3,3,(3,A)5.特点是,大部分有两种不同元素,每个图形两种类个数各不相同。圆形相当于两个方框,这样,全都是八个方框,选D6.角个数只要出现成项很多,分组。三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8隔项,是否有规律0,12,24,14,120,16(7^3-7)每个数都两个数以上,考虑拆分相加(相乘)法。87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。3,2,7/2,12/5,(12/1)通分,3,2变形为3/1,6/3,则各项分子、分母差为质数数列。64,48,36,27,81/4,(243/16)等比数列。出现三个连续自然数,则要考虑合数数列变种的可能。7,9,11,12,13,(12+3)8,12,16,18,20,(12*2)突然出现非正常的数,考虑C项等于A项和B项之间加减乘除,或者与常数/数列的变形2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。1,3,4,7,11,(18)8,5,3,2,1,1,(1-1)首尾项的关系,出现大小乱现的规律就要考虑。3,6,4,(18),12,24首尾相乘10,4,3,5,4,(-2)首尾相加旁边两项(如a1,a3)与中间项(如a2)的关系1,4,3,-1,-4,-3,(-3―(-4))1/2,1/6,1/3,2,6,3,(1/2)B项等于A项乘一个数后加减一个常数3,5,9,17,(33)5,6,8,12,20,(20*2-4)如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。157,65,27,11,5,(11-5*2)一个数反复出现可能是次方关系,也可能是差值关系-1,-2,-1,2,(-7)差值是2级等差1,0,-1,0,7,(2^6-6^2)1,0,1,8,9,(4^1)除3求余题,做题没想法时,试试(亦有除5求余)4,9,1,3,7,6,(C)A.5B.6.C.7D.8(余数是1,0,1,0,10,1)3.怪题:日期型2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3)结绳计数1212,2122,3211,131221,(311322)2122指1212有2个1,2个2.第二部分、图形推理二.基本思路:看是否相加,相减,求同,留同存异,去同相加,相加再去同,一笔划问题,笔划数,线条数,旋转,黑白相间,轴对称/中心对称,旋转,或者答案只有一个图可能通过旋转转成。视觉推理偏向奇偶项,回到初始位置.注:5角星不是中心对称二.特殊思路:1.有阴影的图形可能与面积有关,或者阴影在旋转,还有就是黑白相间。第一组,1/21/41/4第二组,1,1/2,(1/2A)两个阴影,里面逆时针转,外面顺时针转。2.交点个数一般都表现在相交露头的交点上或者一条线段穿过多边形交点数为,3,3,3第二组为3,3,(3)交点数为,1,1,1第二组为2,2,(2)但是,露头的交点还有其它情形。此题算S形,露头数,1,3,5,7,9,11,(13B),15,173.如果一组图形的每个元素有很多种,则可从以下思路,元素不同种类的个数,或者元素的个数。出现一堆乱七八遭的图形,要考虑此种可能。第一组2,4,6种元素,第二组,1,3,(5)种类,1,2,3,4(5)元素个数为4,4,44,4,(4)4.包含的块数/分割的块数出现一些乱七八遭的图形,或者出现明显的空间数,要考虑此种可能。包含的块数,1,2,3,4,5,(6,B)分割的块数为,3,3,3,3,3,(3,A)5.特点是,大部分有两种不同元素,每个图形两种类个数各不相同。圆形相当于两个方框,这样,全都是八个方框,选D6.角个数只要出现成项很多,分组。三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8隔项,是否有规律0,12,24,14,120,16(7^3-7)每个数都两个数以上,考虑拆分相加(相乘)法。87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳
本文标题:行测部分高分复习笔记
链接地址:https://www.777doc.com/doc-6382075 .html