您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 人教版九年级上册--第22章--二次函数顶点式的图像及性质(共59张PPT)
二次函数顶点式的图象和性质刘芙蓉学习目标•掌握二次函数顶点式的图像特征和相关性质。•会用二次函数顶点式的相关知识解决问题在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.复习导入观察图象,回答问题?(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(2)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?213xy我思考,我进步把二次函数y=3(x-1)2加上+2所得函数y=3(x-1)2+2的图象是怎样的呢?y=3(x-1)2+2我思考,我进步探讨1、二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?作图看一看.二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?他们的形状是不是相同呢?在同一坐标系中作出二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象.y=3(x-1)2y=3x2向右y=3(x-1)2+2向上2132xy二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x²,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy2132xy对称轴仍是平行于y轴的直线(x=1);增减性与y=3x2类似.二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x²,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xyX=12132xy对称轴仍是平行于y轴的直线(x=1);增减性与y=3x2类似.顶点是(1,2).二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x²,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xyX=12132xy对称轴仍是平行于y轴的直线(x=1);增减性与y=3x2类似.顶点是(1,2).二次函数y=3(x-1)2+2的图象可以看作是抛物线y=3x2先沿着x轴向右平移1个单位,再沿直线x=1向上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x²,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy开口向上,当X=1时有最小值:且最小值=2.X=1探讨2、二次函数y=3(x-1)2-2的图象y=3x2探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象探讨2、二次函数y=3(x-1)2-2的图象2)1(32xy探讨2、二次函数y=3(x-1)2-2的图象y=3(x-1)2y=3x2向右y=3(x-1)2+2向上y=3(x-1)2y=3x2向右y=3(x-1)2-2向下我思考,我进步探讨3、在同一坐标系中作出二次函数y=-3(x-1)2+2,y=-3(x-1)2-2,y=-3x²和y=-3(x-1)2的图象二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x²,y=-3(x-1)2的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?对称轴仍是平行于y轴的直线(x=1);增减性与y=-3x2类似.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向右平移1个单位,再沿直线x=1向上(或向下)平移2个单位后得到的.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x²,y=-3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy2132xyy2132xyX=1对称轴仍是平行于y轴的直线(x=1);增减性与y=-3x2类似.顶点分别是(1,2)和(1,-2).二次函数y=-3(x-1)2+2与y=-3(x-1)2+2的图象可以看作是抛物线y=-3x2先沿着x轴向右平移1个单位,再沿直线x=1向上(或向下)平移2个单位后得到的.二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x²,y=-3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?213xy开口向下,当x=1时y有最大值:且最大值=2(或最大值=-2).2132xyy2132xyX=1y=3(x-1)2y=3x2向右y=3(x-1)2+2向上y=3(x-1)2y=3x2向右y=3(x-1)2-2向下y=-3(x-1)2y=-3x2向右y=-3(x-1)2+2向上y=-3(x-1)2y=-3x2向右y=-3(x-1)2-2向下探讨4、二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=-3x²,y=-3(x+1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?我思考,我进步213xy2132xy2132xy对称轴仍是平行于y轴的直线(x=-1);增减性与y=-3x2类似.二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向左平移1个单位,再沿直线x=-1向上(或向下)平移2个单位后得到的.先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.x=1213xy2132xy2132xy对称轴仍是平行于y轴的直线(x=-1);增减性与y=-3x2类似.顶点分别是(-1,2)和(-1,-2)..二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向左平移1个单位,再沿直线x=-1向上(或向下)平移2个单位后得到的.先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.x=1213xy2132xy2132xy对称轴仍是平行于y轴的直线(x=-1);增减性与y=-3x2类似.顶点分别是(-1,2)和(-1,-2)..二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向左平移1个单位,再沿直线x=-1向上(或向下)平移2个单位后得到的.开口向下,当x=-1时y有最大值:且最大值=2(或最大值=-2).先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.x=1213xy2132xy2132xy对称轴仍是平行于y轴的直线(x=-1);增减性与y=-3x2类似.顶点分别是(-1,2)和(-1,-2)..二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象可以看作是抛物线y=-3x2先沿着x轴向左平移1个单位,再沿直线x=-1向上(或向下)平移2个单位后得到的.开口向下,当x=-1时y有最大值:且最大值=2(或最大值=-2).先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.x=1y=3(x-1)2y=3x2向右y=3(x-1)2+2向上y=3(x-1)2y=3x2向右y=3(x-1)2-2向下y=-3(x-1)2y=-3x2向右y=-3(x-1)2+2向上y=-3(x-1)2y=-3x2向右y=-3(x-1)2-2向下y=-3(x+1)2y=-3x2y=-3(x+1)2+2y=-3(x+1)2y=-3x2向左y=-3(x+1)2-2向下向上向左(1)二次函数y=3(x+1)2的图象可以把二次函数y=3x2的图象向左平移1个单位得到,它的对称轴是x=-1(即x+1=0),顶点坐标是(-1,0)(2)二次函数y=-3(x-2)2+4的图象可以把二次函数y=-3x2的图象先向右平移2个单位,再向向上平移4个单位得到,它的对称轴是x=2(即x-2=0),顶点坐标是(2,4)y=a(x-h)²+k与y=ax²的关系•一般地,y=a(x-h)²+k(a≠0)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时,向左平移),再沿对称轴整体上(下)平移|k|个单位(当k0时向上平移;当k0时,向下平移)得到的.•因此,二次函数y=a(x-h)²+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关.二次函数y=a(x-h)2+k的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a0)y=a(x-h)2+k(a0)(h,k)(h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:1.指出下列函数图象的开口方向对称轴和顶点坐标及最值:2.对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?211.y=2x+3-,2212.y=-x+1-5.32.不同点:(1)只是位置不同、顶点不同:分别是(h,k)和(0,0).(2)对称轴不同:分别是直线x=h和y轴.(3)最值不同:分别是k和0.3.联系:y=a(x-h)²+k(a≠0)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时,向左平移),再沿对称轴整体上(下)平移|k|个单位(当k0时向上平移;当k0时,向下平移)得到的.1.相同点:(1)形状相同(图像都是抛物线,开口方向相同).(2)都是轴对称图形.(3)都有最(大或小)值.(4)a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随x的增大而减小.y=a(x-h)²+k与y=ax²的关系1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出草图进行验证.2.填写下表:y=a(x-h)²+k开口方向对称轴顶点坐标a0a0;532.12xy;15.0.22xy;143.32xy;522.42xy;245.0.52xy.343.62xy课堂练习1.抛物线y=0.5(x+2)2–3可以由抛物线先向平移2个单位,在向下平移个单位得到。2.已知s=–(x+1)2–3,当x为时,s取最值为。3.顶点坐标为(1,1),且经过原点的抛物线的函数解析式是()A.y=(x+1)2+1B.y=–(x+1)2+1C.y=(x–1)2+1D.y=–(x–1)2+1y=0.5x2左3–1大–
本文标题:人教版九年级上册--第22章--二次函数顶点式的图像及性质(共59张PPT)
链接地址:https://www.777doc.com/doc-6383935 .html