您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年中考数学试题-2019年河南省中考试题及答案解析
2019年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。1.﹣的绝对值是()A.﹣B.C.2D.﹣2【答案】B【解析】|﹣|=,故选:B.2.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【答案】C【解析】0.0000046=4.6×10﹣6.故选:C.3.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【答案】B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.4.下列计算正确的是()A.2a+3a=6aB.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【答案】D【解析】2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.5.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图①的三视图为:图②的三视图为:故选:A.6.一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.7.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【解析】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.8.已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【答案】D【解析】抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=4;故选:D.9.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.【答案】A【解析】如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【答案】D【解析】∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.二、填空题(每小题3分,共15分。)11.计算:﹣2﹣1=1.【解析】﹣2﹣1=2﹣=1.故答案为:1.12.不等式组的解集是x≤﹣2.【解析】解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是.【解析】列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为:.14.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为+π.【解析】作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=90°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.15.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=α.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为或.【解析】分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=1,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC﹣BE=a﹣a=.在△ADB′与△B′CE中,,∴△ADB′∽△B′CE,∴=,即=,解得a1=,a2=0(舍去).综上,所求a的值为或.故答案为或.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x=.原式=(﹣)÷=•=,当x=时,原式==.17.(9分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,则DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,四边形OBEH为菱形.(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵=sin∠ABD=sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2,∴FD==4﹣2,故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=AB,∴sin∠EAB==,∴∠EAB=30°.故答案为:30°18.(9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)解:∵∠ACE=90°,∠CAE=34°,CE=55m,∴tan∠CAE=,∴AC==≈82.1m,∵AB=21m,∴BC=AC﹣AB=61.1m,在Rt△BCD中,tan60°==,∴CD=BC≈1.73×61.1≈105.7m,∴DE=CD﹣EC=105.7﹣55≈51m,答:炎帝塑像DE的高度约为51m.20.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;21.(10分)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第一象限内交点的坐标.(2)画出函数图象函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到.请在同一直角坐标系中直接画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为8;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为m≥8.解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入y=﹣x+得:2=﹣2+,解得:m=8;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+并整理得:x2﹣mx+4=0,△=m2﹣4×4≥0时,两个函数有交点,解得:m≥8;(4)由(3)得:m≥8.22.(10
本文标题:2019年中考数学试题-2019年河南省中考试题及答案解析
链接地址:https://www.777doc.com/doc-6389591 .html