您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 必修二立体几何题型归纳
第1讲空间几何体的结构及其三视图和直观图考点一空间几何体的结构特征【例1】给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是().A.0B.1C.2D.3【训练1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中错误的命题的序号是________.考点二由空间几何体的直观图识别三视图【例2】(2013·新课标全国Ⅱ卷)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为().【训练2】(2014·济宁一模)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过A,M,N和D,N,C1的两个截面截去正方体的两个角后得到的几何体如图1,则该几何体的正视图,侧视图、俯视图依次为图2中的().考点三由空间几何体的三视图还原直观图【例3】(1)(2013·四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是().(2)若某几何体的三视图如图所示,则这个几何体的直观图可以是().【训练3】若某几何体的三视图如图所示,则这个几何体的直观图可以是().易错辨析——三视图识图不准致误【典例】(2012·陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为().【自主体验】(2014·东北三校模拟)如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是().第2讲空间几何体的表面积与体积考点一空间几何体的表面积【例1】(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是().A.8B.20+82C.16D.24+82考点二空间几何体的体积【例2】(1)(2013·新课标全国Ⅰ卷)某几何体的三视图如图所示,则该几何体的体积为().A.16+8πB.8+8πC.16+16πD.8+16π(2)(2014·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为().A.312B.34C.612D.64【训练2】如图所示,已知E,F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A,CC1的中点,求四棱锥C1-B1EDF的体积.考点三球与空间几何体的接、切问题【例3】(1)(2013·福建卷)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是______________.(2)(2013·辽宁卷)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为().A.3172B.210C.132D.310【训练3】(2013·新课标全国Ⅰ卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为().A.500π3cm3B.866π3cm3C.1372π3cm3D.2048π3cm3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,则CP+PA1的最小值为________(其中PA1表示P,A1两点沿棱柱的表面距离).【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.方法优化——特殊点在求解几何体的体积中的应用【典例】(2012·山东卷)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.第3讲空间点、直线、平面之间的位置关系考点一平面的基本性质及其应用【例1】(1)以下四个命题中,正确命题的个数是().①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是().A.三角形B.四边形C.五边形D.六边形考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【训练2】在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三异面直线所成的角【例3】在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.【训练3】(2014·成都模拟)在正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,A1D1的中点,则A1B与EF所成角的大小为________.思想方法——构造模型判断空间线面的位置关系【典例】(2012·上海卷)已知空间三条直线l,m,n,若l与m异面,且l与n异面,则().A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能【自主体验】1.(2013·浙江卷)设m,n是两条不同的直线,α,β是两个不同的平面().A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β2.对于不同的直线m,n和不同的平面α,β,γ,有如下四个命题:①若m∥α,m⊥n,则n⊥α;②若m⊥α,m⊥n,则n∥α;③若α⊥β,γ⊥β,则α∥γ;④若m⊥α,m∥n,n⊂β,则α⊥β.其中真命题的个数是().A.1B.2C.3D.43.(2013·安徽卷)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ<12时,S为四边形;②当CQ=12时,S为等腰梯形;③当CQ=34时,S与C1D1的交点R满足C1R=13;④当34<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为62.4.如图,在正方体ABCD-A1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.第4讲直线、平面平行的判定与性质考点一有关线面、面面平行的命题真假判断【例1】(1)(2013·广东卷)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是().A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是().A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【训练1】(1)(2014·长沙模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是().A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为().A.3B.2C.1D.0考点二线面平行的判定与性质【例2】如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.【训练2】如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC的中点,G为DE的中点.证明:直线HG∥平面CEF.考点三面面平行的判定与性质【例3】(2013·陕西卷)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【训练3】在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.【自主体验】(2013·福建卷改编)如图,在四棱锥P-ABCD中,AB∥DC,AB=6,DC=3,若M为PA的中点,求证:DM∥平面PBC.9.(2014·青岛一模)四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A,N,D三点的平面交PC于M.(1)求证:PD∥平面ANC;(2)求证:M是PC中点.第5讲直线、平面垂直的判定与性质考点一直线与平面垂直的判定和性质【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【训练1】如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.【训练2】如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题【例3】如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.【训练3】如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.考点四线面角、二面角的求法【例4】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面P
本文标题:必修二立体几何题型归纳
链接地址:https://www.777doc.com/doc-6390229 .html