您好,欢迎访问三七文档
初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚1代数部分一、数1、正数和负数:正数大于0;负数小于0;2、0既不是正数,也不是负数;正数大于负数;3、整数包括:正整数,0和负整数;4、分数包括:正分数和负分数;5、有理数包括:整数和分数(有限小数,无限循环小数);6、数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向,这样的一条直线叫数轴;7、任何一个有理数(实数)都可以用数轴上的一个点表示,数轴上的每一个点都表示一个实数,即数轴上的点和实数是一一对应的;8、相反数:两个数只有符号不同,则其中一个数是另一个的相反数;两个互为相反数的数相加得0;0的相反数是09、在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等;10、数轴上的两个点表示的数,右边的总比左边的大;11、绝对值:数轴上,所对应的点与原点的距离;12、正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;13、两个负数比较大小,绝对值大的反而小;14、有理数加法法则:同号相加,符号不变,绝对值相加;异号相加,绝对值相等的得0;绝对值不等的,符号和绝对值大的相同,然后绝对值相减;15、一个数加0,仍是这个数;16、加法交换律:A+B=B+A17、加法结合律:(A+B)+C=A+(B+C)18、有理数减法法则:减去一个数,等于加上这个数的相反数;19、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘;任何数与0相乘,积为0;初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚220、乘积为1的两个有理数互为倒数;0没有倒数21、乘法交换律:AB=BA22、乘法结合律:(AB)C=A(BC)23、乘法分配律:A(B+C)=AB+AC24、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除;25、0除以任何非0的数都得0;0不能做除数26、乘方:求n个相同因数a的积的运算叫乘方,结果叫幂;a是底数;n是指数;na读作a的n次幂;27、有理数混和运算法则:先乘方,再乘除,后加减;有括号的先算括号里面的;28、无理数:无限不循环小数。有正负之分;是无理数;29、算数平方根:一个正数x的平方等于a,即2x=a,则x是a的算数平方根,记作xa,读作“根号a”30、0的算数平方根是031、平方根:一个数x的平方等于a,即2x=a,则x是a的平方根(又叫:二次方根),记作xa32、一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根33、开平方:求一个数的平方根的运算;a叫做被开方数34、立方根:一个数x的立方等于a,即3x=a,则x是a的立方根(又叫:三次方根),3xa35、每个数只有一个立方根,正数的立方根是正数;0的立方根是0;负数的立方根是负数;36、开立方:求一个数的立方根的运算;a叫做被开方数37、实数:有理数和无理数的统称。其相反数、倒数、绝对值的意义等都和有理数的相同。实数的运算法则和有理数相同。计算后出现带根号的无理数要化简,使被开方数不初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚3含分母和开得尽的因数正整数整数0负整数有理数正分数实数分数负分数无理数(无限不循环小数)二、式1、代数式:用基本运算符号连接数字或字母的式子;单独的数字或字母也是代数式2、单项式:数字和字母的积;单独的数字或字母也是单项式;数字因数叫做单项式的系数3、多项式:几个单项式的和;每个单项式叫做多项式的项,不含字母的叫常数项4、单项式的次数:一个单项式中,所有字母的指数和;单独的一个非零数的次数是05、多项式的次数:次数最高的项的次数6、同类项:所含字母相同,并且相同字母的指数也相同的项7、合并同类项:把同类项合并成一项;合并同类项时,系数相加,字母和字母的指数不变8、去括号法则:括号前面是加号,去括号运算符号不变;括号前面是减号,去括号(一级运算)运算符号变;多重括号,由里面的括号开始去;9、整式:单项式和多项式的统称10、整式加减运算:先去括号,再合并同类项,直到式子最简11、同底数幂的乘法:同底数幂相乘,底数不变,指数相加,如mnaa=mna(m、n为正整数)12、幂的乘方:幂的乘方,底数不变,指数相乘,如()mna=mna(m、n为正整数)13、积的乘方:积的乘方等于积中每个因数乘方的积,如()nab=nnab(n为正整数)初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚414、同底数幂的除法:同底数幂相除,底数不变,指数相减,如mnaa=mna(m、n为正整数,a≠0,且mn);0a=1(a≠0);pa=1pa(a≠0,p是正整数)15、单项式乘以单项式:把系数相乘,相同字母的指数分别相加,其余字母连同其指数不变,作为积的因式16、单项式乘以多项式:根据分配律用单项式去乘多项式的每一项,再把积相加17、多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把积相加18、平方差公式:两数和与这两数差的积,等于它们的平方差22()()ababab19、完全平方公式:222()2abaabb20、整式的除法:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式21、多项式除以单项式,先把多项式的每一项分别除以单项式,再把所得商相加22、分解因式:把一个多项式化成几个整式的积的形式23、公因式:多项式中各项都含有的相同因式24、完全平方式:形如222aabb的式子25、因式分解的方法:(1)提公因式:多项式的各项含有公因式,把这个公因式提出来,将多项式化成两个因式的乘积(2)运用公式法:把乘法公式反过来,用来把某些多项式分解因式(3)十字相乘法:(4)公式法:若一元二次方程20axbxc的两个根分别为12xx和,那么二次三项式2axbxc分解因式得2axbxc=12()()axxxx26、分式:整式A除以整式B,表示成AB。A为分式的分子;B为分式的分母(B0)27、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚5分式的值不变28、约分:把一个分式的分子和分母的公因式约去的变形29、最简分式:分子和分母没有公因式的分式30、分式乘除法法则:分式相乘,分子相乘作分子,分母相乘作分母31、分式相除,把除式的分子和分母颠倒位置后再与被除式相乘32、分式加减法则:同分母分式相加减,分母不变,分子相加;异分式先通分,再加减33、通分:根据分式的基本性质,异分母分式化为同分母分式的过程;通分时常取最简公分母34、分式方程:分母中含有未知数的方程35、增根:使原分式方程的分母为0的方程的根;解分式方程必须检验三、方程(组)1、等式:用等号表示相等关系的式子;等式具有传递性2、方程:含有未知数的等式3、一元一次方程:一个方程中,只含一个未知数(元),且未知数的次数为1(次)的方程4、等式性质:等式两边同时加上(或减去)同一个代数式,结果还是等式5、等式两边同时乘以同一个数(或除以同一个不为0的数),结果还是等式6、移项:从方程一边移到另一边的变形,移项要变号;7、二元一次方程:含有两个未知数,且所含未知数的项数的次数都是1的方程8、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程9、二元一次方程的一个解:适合一个二元一次方程的一组未知数的值10、二元一次方程组的解:二元一次方程组中各个方程的公共解;它们成对出现11、二元一次方程组的解法:(1)代入消元法:简称“代入法”,将其中一个方程的某未知数用含有另一个未知数的代数式表示,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚6次方程的方法(2)加减消元法:简称“加减法”,通过两式相加(减)消去其中一个未知数的方法(3)图像法:根据二元一次方程的解和一次函数图像的关系,找出两直线的交点坐标求解的方法12、整式方程:等号两边都是关于未知数的整式方程13、一元二次方程:只含有一个未知数的整式方程,化成20axbxc(a≠0,a,b,c为常数)14、一元二次方程的解法:(1)直接开平方法;(2)配方法:通过配成完全平方式的方法得到一元二次方程的根的方法(3)公式法:对于20xaxbc(a≠0,a,b,c为常数),当24bac≥0时(当24bac0时,方程无解),可用一元二次方程的求根公式求解的方法21,242bbacxa(4)分解因式法:又称“十字相乘法”,当一元二次方程的一边为0,另一边能分解成两个一次因式的乘积时,求方程的根的方法四、不等式(组)1、不大于:等于或小于,符号“≤”,读作“小于等于”2、不小于:大于或大于,符号“≥”,读作“大于等于”3、不等式:用符号“”(或“≤”),“”(或“≥”)连接的式子;不等式具有传递性(除“≠”外)4、不等式基本性质:不等式两边加上(或减去)同一个整式,不等号方向不变5、不等式两边乘以(或除以)同一个正数,不等号方向不变6、不等式两边乘以(或除以)同一个负数,不等号方向改变7、不等式的解:能使不等式成立的未知数的值初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚78、解集:一个含有未知数的不等式的所有解的统称9、解不等式:求不等式解集的过程10、一元一次不等式:不等式的左右两边是整式,只含有一个未知数,且未知数的最高次数是1的不等式11、一元一次不等式组:由关于同一未知数的几个一元一次不等式合在一起组成12、一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分13、解不等式组:求不等式解集的过程14、一元一次不等式组的解集:同大取大,同小取小,相向取中间,相背则无解;五、函数1、函数:有两个变量x和y,给定x值就对应找到唯一一个y值2、函数图像:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系里描出它的对应点,所有点组成的图像3、变量包括:自变量(x)和因变量(y)4、函数的表示方法:(1)解析式:表示变量之间关系的方法,根据任何一个自变量的值求出相应的因变量的值(2)列表法:表示因变量随自变量的变化而变化的情况(3)图像法:表示变量之间关系的方法,比较直观5、平面直角坐标系:在平面内,由两条互相垂直且有公共原点的数轴组成的;两条坐标轴把平面直角坐标系分成4部分:右上为第一象限,右下为第四象限,左上第二,左下第三6、坐标:过一点分别向x轴、y轴作垂线,垂足在x轴、y轴上所对应的数为a、b,则(a,b)7、坐标加减,图形大小和形状不变;坐标乘除,图形会变化8、一次函数:(1)定义:若两个变量x,y的关系能表示成y=kx+b(k,b为常数,k≠0)的形式初中数学概念、公式、定理大全天津市静海县沿庄镇中学刘刚8(2)正比例函数:当y=kx+b(k,b为常数,k≠0),b=0的时候,即y=kx,其图像过原点(3)一次函数的图像是一条直线:当k0时,直线向右上方;当k0时,直线向右下方。直线与x轴的交点为(bk,0);与y轴的交点为(0,b)(4)若两条直线平行,则k相同9、反比例函数:(1)定义:若两个变量x,y的关系能表示成y=kx(k为常数,k≠0)的形式,x不为0(2)反比例函数的图像是双曲线:当k0时,分支在一、三象限,在每一象限内,y随x增大而增大;当k0时,分支在二、四象限,在每一象限内,y随x增大而减小;10、二次函数:(1)定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.(2)二次函数的图像是抛物线(3)几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时,开口向上当0a时,开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbx
本文标题:数学公式大全
链接地址:https://www.777doc.com/doc-6449551 .html