您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 规划提出能达到一定目标的行动序列的任务
规划规划:提出能达到一定目标的行动序列的任务基于搜索的问题智能体逻辑规划智能体规划环境经典的:完全可观察、确定性的、有限的、静态的以及离散的。非经典:部分可观察或随机致谢:本讲义部分内容来自TomLenaert@~tlenaert/teach/slides/AIMA/主要内容规划问题规划问题语言:语法和语义状态空间搜索规划前向、后向利用问题的表示的规划算法偏序规划命题逻辑规划规划方法分析现实世界问题的困难假设一个问题智能使用标准的搜索算法…什么样的行动是相关的?例子:购买“人工智能教材”,假设对于每一个10位数字的ISBN号码都有一个购买行动遍历搜索vs.后项搜索如何寻找一个好的启发函数?例如在线购买4本不同的书,4个步骤共有1040规划状态耗散的估计:所要买书的剩余数目应是一个好的估计。Problem-dependentvs.–independent:启发函数取未满足的合取式的数目如何将问题分解?假设大部分现实世界问题是近似可分解的:需要做些附加工作来合并子规划PlanninglanguageWhatisagoodlanguage?Expressiveenoughtodescribeawidevarietyofproblems.Restrictiveenoughtoallowefficientalgorithmstooperateonit.Planningalgorithmshouldbeabletotakeadvantageofthelogicalstructureoftheproblem.STRIPSandADLGenerallanguagefeaturesRepresentationofstatesDecomposetheworldinlogicalconditionsandrepresentastateasaconjunctionofpositiveliterals(atomicsentences)Propositionalliterals:PoorUnknownFO-literals(groundedandfunction-free):At(Plane1,Melbourne)At(Plane2,Sydney)Closedworldassumption:conditionsnotmentionedareassumedfalseRepresentationofgoalsPartiallyspecifiedstateandrepresentedasaconjunctionofpositivegroundliteralsAgoalissatisfiedifthestatecontainsallliteralsingoal.Generallanguagefeatures(2)RepresentationsofactionsAction=PRECOND+EFFECTAction(Fly(p,from,to),PRECOND:At(p,from)Plane(p)Airport(from)Airport(to)EFFECT:¬AT(p,from)At(p,to))=actionschema(模式)(p,from,toneedtobeinstantiated)ActionnameandparameterlistPrecondition(conj.offunction-freeliterals)Effect(conjoffunction-freeliteralsandPisTrueandPisfalse)Add-listvsdelete-listinEffectLanguagesemanticsHowdoactionsaffectstates?Anactionisapplicableinanystatethatsatisfiestheprecondition.ForFOactionschemaapplicabilityinvolvesasubstitutionforthevariablesinthePRECOND.Ex:At(P1,JFK)At(P2,SFO)Plane(P1)Plane(P2)Airport(JFK)Airport(SFO)Satisfies:At(p,from)Plane(p)Airport(from)Airport(to)With={p/P1,from/JFK,to/SFO}Thustheactionisapplicable.Languagesemantics(2)Theresultofexecutingactionainstatesisthestates’s’issameassexceptAnypositiveliteralPintheeffectofaisaddedtosAnynegativeliteral¬PisremovedfromsExampleinpreviouspage:At(P1,SFO)At(P2,SFO)Plane(P1)Plane(P2)Airport(JFK)Airport(SFO)STRIPSassumption:avoidsrepresentationalframeproblemeveryliteralNOTintheeffectremainsunchangedSolutionisasequencesuchthatini→goalExpressivenessandextensionsSTRIPSissimplifiedImportantlimit:function-freeliteralsAllowsforpropositionalrepresentationFunctionsymbolsleadtoinfinitelymanystatesandactionsRecentextension:ActionDescriptionlanguage(ADL)Action(Fly(p:Plane,from:Airport,to:Airport),PRECOND:At(p,from)(fromto)EFFECT:¬At(p,from)At(p,to))Standardization:Planningdomaindefinitionlanguage(PDDL)例子:积木世界一组放在桌子上的立方体积木,积木能够被叠放,但是只有一块积木能够直接放在另一块的上面。一个机器臂能够拿起一块积木并把它移到别的位置,无论是在桌子上还是在另一块积木上。机器臂每次只能拿起一块积木。ExamplesofplanninginBlocksWorldInit(On(A,Table)On(B,Table)On(C,Table)Block(A)Block(B)Block(C)Clear(A)Clear(B)Clear(C))Goal(On(A,B)On(B,C))Clear(b)definedas“thereisaclearspaceonbtoholdablock”Action(Move(b,x,y))PRECOND:On(b,x)Clear(b)Clear(y)Block(b)(bx)(by)(xy)EFFECT:On(b,y)Clear(x)¬On(b,x)¬Clear(y)Action(MoveToTable(b,x))PRECOND:On(b,x)Clear(b)Block(b)(bx)EFFECT:On(b,Table)Clear(x)¬On(b,x))Note:weintroducexytoblockspuriousactionssuchasMove(B,C,C)注意负文字主要内容规划问题规划问题语言:语法和语义状态空间搜索规划前向、后向利用问题的表示的规划算法偏序规划命题逻辑规划规划方法分析状态空间搜索规划前向搜索后向搜索启发式函数Planningwithstate-spacesearchBothforwardandbackwardsearchpossibleProgressionplannersforwardstate-spacesearchConsidertheeffectofallpossibleactionsinagivenstateRegressionplannersbackwardstate-spacesearchToachieveagoal,whatmusthavebeentrueinthepreviousstate?ProgressionandregressionProgressionalgorithmFormulationasstate-spacesearchproblem:Initialstate=initialstateoftheplanningproblemLiteralsnotappearingarefalseActions=thosewhosepreconditionsaresatisfiedAddpositiveeffects,deletenegativeGoaltest=doesthestatesatisfythegoal?Stepcost=eachactioncosts1Nofunctions…anygraphsearchthatiscompleteisacompleteplanningalgorithm.Inefficient:(1)irrelevantactionproblem(2)goodheuristicrequiredforefficientsearchRegressionalgorithmHowtodeterminepredecessors?Whatarethestatesfromwhichapplyingagivenactionleadstothegoal?Goalstate=At(C1,B)At(C2,B)…At(C20,B)Relevantactionforfirstconjunct:Unload(C1,p,B)Worksonlyifpre-conditionsaresatisfied.Previousstate=In(C1,p)At(p,B)At(C2,B)…At(C20,B)SubgoalAt(C1,B)shouldnotbepresentinthisstate.Actionsmustnotundodesiredliterals(consistent)Mainadvantage:onlyrelevantactionsareconsidered.Oftenmuchlowerbranchingfactorthanforwardsearch.Regressionalgorithm(2)GeneralprocessforpredecessorconstructionGiveagoaldescriptionGLetAbeanactionthatisrelevantandconsistentThepredecessorsisasfollows:AnypositiveeffectsofAthatappearinGaredeleted.EachpreconditionliteralofAisadded,unlessitalreadyappears.Anystandardsearchalgorithmcanbeaddedtoperformthesearch.Terminationwhenpredecessorsatisfiedbyinitialstate.InFOcase,satisfactionmightrequireasubstitution.Heuristicsforstate
本文标题:规划提出能达到一定目标的行动序列的任务
链接地址:https://www.777doc.com/doc-647291 .html