您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学计算题型汇总
分数计算1.3/7×49/9-4/32.8/9×15/36+1/273.12×5/6–2/9×34.8×5/4+1/45.6÷3/8–3/8÷66.4/7×5/9+3/7×5/97.5/2-(3/2+4/5)8.7/8+(1/8+1/9)9.9×5/6+5/610.3/4×8/9-1/311.7×5/49+3/1412.6×(1/2+2/3)13.8×4/5+8×11/514.31×5/6–5/615.9/7-(2/7–10/21)16.5/9×18–14×2/717.4/5×25/16+2/3×3/418.14×8/7–5/6×12/1519.17/32–3/4×9/2420.3×2/9+1/321.5/7×3/25+3/722.3/14××2/3+1/623.1/5×2/3+5/624.9/22+1/11÷1/225.5/3×11/5+4/326.45×2/3+1/3×1527.7/19+12/19×5/628.1/4+3/4÷2/329.8/7×21/16+1/230.101×1/5–1/5×211.口算下面各题(1)58+42=(2)87-45=(3)125×8=(4)50×12=(5)804÷4=(6)134+66=(7)1000-98=(8)720÷5=(9)0÷47=2.先填写下面各题的运算顺序,再计算出得数。(1)168+36-36+32=(2)153-5×14+83=(3)50×5÷50×5=3.判断:对的打“√”,错的打“×”(1)13×15与15×13表示的意义相同。()(2)3000÷425÷8的计算结果一定小于3000÷(425×8)的计算结果。()(3)两个因数的积是800,如果一个因数不变,另一个因数缩小20倍,那么积是40。()(4)算式:“750÷25+35×2”所表示的意义是750除以25的商;加上35的2倍,和是多少?()(5)24×25=6×4×25=6+100=106()4.用简便方法计算:(1)3786-499(2)32×25×125(3)1653-338-662(4)7987+350+2013+450(5)38×38+62×38(6)452+99×452(7)201×79(8)50×125×4×85.计算下面各题:(1)340×(120-40÷8)(2)45×(720-1957÷19)(3)86+[4500+(2088÷36)÷2](4)396×[74-(4875÷15-13×21)](5)[1054-(174-168)]÷8(6)6048÷[(107-99)×9]一元一次方程1.2(x-2)-3(4x-1)=9(1-x)2.11x+64-2x=100-9x3.15-(8-5x)=7x+(4-3x)4.3(x-7)-2[9-4(2-x)]=225.3/2[2/3(1/4x-1)-2]-x=26.2(x-2)+2=x+17.0.4(x-0.2)+1.5=0.7x-0.388.30x-10(10-x)=1009.4(x+2)=5(x-2)10.120-4(x+5)=2511.15x+863-65x=5412.12.3(x-2)+1=x-(2x-1)13.11x+64-2x=100-9x14.14.59+x-25.31=015.x-48.32+78.51=8016.820-16x=45.5×817.(x-6)×7=2x18.3x+x=1819.0.8+3.2=7.220.12.5-3x=6.521.1.2(x-0.64)=0.5422.x+12.5=3.5x23.8x-22.8=1.224.1\50x+10=6025.2\60x-30=2026.3\3^20x+50=11027.4\2x=5x-328.5\90=10+x29.6\90+20x=3030.7\691+3x=700因式分解方法因式分解是代数中的重要内容,在学习中如何进行小结与复习?按照“一提、二公式、三分组、四检查”的步骤,效果良好。1.“一提”:先看多项式的各项是否有公因式,若有公因式,先提取公因式。2.“二公式”:若多项式的各项无公因式(或已提取公因式),第二步则看项数运用公式。如果是两项就考虑用平方差公式,如果是三项就先考虑用完全平方公式,再考虑用型式子进行因式分解,最后考虑用十字相乘法。3.“三分组”:若以上两步都不能对多项式进行因式分解,则应考虑分组分解。分组的原则是:一般先考虑分组后能运用公式(在既可用完全平方公式,又可用平方差公式时,常把能用完全平方公式的项分为一组),再考虑分组后能提取公因式。但必须确保组与组之间能继续提取公因式或运用公式,从而达到将整个多项式分解的目的。4.“四检查”:检查多项式的每一个因式是否还能继续分解因式,直到每一个多项式因式都不能再分解为止。用整式的乘法检查因式分解的结果是否正确。一、分组分解因式的几种常用方法.一、分组分解因式的几种常用方法.1.按公因式分解例1分解因式7x2-3y+xy+21x.分析:第1、4项含公因式7x,第2、3项含公因式y,分组后又有公因式(x-3),解:原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).2.按系数分解例2分解因式x3+3x2+3x+9.分析:第1、2项和3、4项的系数之比1:3,把它们按系数分组.解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).3.按次数分组例3分解因式m2+2m·n-3m-3n+n2.分析:第1、2、5项是二次项,第3、4项是一次项,按次数分组后能用公式和提取公因式.解:原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).4.按乘法公式分组分析:第1、3、4项结合正好是完全平方公式,分组后又与第二项用平方差公式.5.展开后再分组例5分解因式ab(c2+d2)+cd(a2+b2).分析:将括号展开后再重新分组.解:原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).6.拆项后再分组例6分解因式x2-y2+4x+2y+3.分析:把常数拆开后再分组用乘法公式.解:原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).7.添项后再分组例7分解因式x4+4.分析:上式项数较少,较难分解,可添项后再分组.解:原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)二、用换元法进行因式分解用添加辅助元素的换元思想进行因式分解就是原式繁杂直接分解有困难,通过换元化为简单,从而分步完成.例8分解因式(x2+3x-2)(x2+3x+4)-16.分析:将令y=x2+3x,则原式转化为(y-2)(y+4)-16再分解就简单了.解:令y=x2+3x,则原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).三、用求根法进行因式分解例9分解因式x2+7x+2.分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求该多项式对应方程的根再分解.四、用待定系数法分解因式.例10分解因式x2+6x-16.分析:假设能分解,则应分解为两个一次项式的积形式,即(x+b1)(x+b2),将其展开得x2+(b1+b2)x十b1·b2与x2+6x-16相比较得b1+b2=6,b1·b2=-16,可得b1,b2即可分解.解:设x2+6x-16=(x+b1)(x+b2)则x2+6x-16=x2+(b1+b2)x+b1·b2∴x2+6x-16=(x-2)(x+8).因式分解练习题1(一)填空1.一个多项式若能因式分解,则这个多项式被其任一因式除所得余式为_________.2.变形(1)(a+b)(a-b)=a2-b2,(2)a2-b2=(a-b)(a+b)中,属于因式分解过程的是________.3.若a,b,c三数中有两数相等,则a2(b-c)+b2(c-a)+c2(a-b)的值为_________.4.12.718×0.125-0.125×4.718=_________.5.1.13×2.5+2.25×2.5+0.62×2.5=_________.6.分解因式:a2(b2-c2)-c2(b-c)(a+b)=_________.7.因式分解:(a-2b)(3a+4b)+(2a-4b)(2a-3b)=(a-2b)·().8.若a+b+c=m,则整式m·[(a-b)2+(b-c)2+(c-a)2]+6(a+b+c)(ab+bc+ca)可用m表示为_______________.9.(2x+1)y2+(2x+1)2y=_________.10.因式分解:(x-y)n-(x-y)n-2=(x-y)n-2·_________.11.m(a-m)(a-n)-n(m-a)(a-n)=_________.12.因式分解:x(m-n)+(n-m)y-z(m-n)=(m-n)().13.因式分解:(x+2y)(3x2-4y2)-(x+2y)2(x-2y)=________.14.21a3b-35a2b3=_________.15.3x2yz+15xz2-9xy2z=__________.16.x2-2xy-35y2=(x-7y)().17.2x2-7x-15=(x-5)().18.20x2-43xy+14y2=(4x-7y)().19.18x2-19x+5=()(2x-1).20.6x2-13x+6=()().21.5x2+4xy-28y2=()().22.-35m2n2+11mn+6=-()().23.6+11a-35a2=()().24.6-11a-35a2=()().25.-1+y+20y2=()().26.20x2+()+14y2=(4x-7y)(5x-2y).27.x2-3xy-()=(x-7y)(x+4y).28.x2+()-28y2=(x+7y)(x-4y).29.x2+()-21y2=(x-7y)(x+3y).30.kx2+5x-6=(3x-2)(),k=______.31.6x2+5x-k=(3x-2)(),k=______.32.6x2+kx-6=(3x-2)(),k=______.33.18x2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.34.18x2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.35.20x2-43xy+14y2=(4x+m)(5x+n),则m=_____,n=_____.36.20x2-43xy+m=(4x-7y)(5x+n),则m=_____,n=_____.38.x4-4x3+4x2-1=_______.39.2x2-3x-6xy+9y=________.40.21a2x-9ax2+6xy2-14ay2=________.41.a3+a2b+a2c+abc=________.42.2(a2-3ac)+a(4b-3c)=_________.43.27x3+54x2y+36xy2+8y3_______.44.1-3(x-y)+3(x-y)2-(x-y)3=_______.45.(x+y)2+(x+m)2-(m+n)2-(y+n)2=_______.46.25x2-4a2+12ab-9b2=_______.47.a2-c2+2ab+b2-d2-2cd=_______.48.x4+2x2+1-x2-2ax-a2=________.50.a2-4b2-4c2-8bc=__________.51.a2+b2+4a-4b-2ab+4=________.指数函数对数函数计算题30-11、计算:lg5·lg8000+.2、解方程:lg2(x+10)-lg(x+10)3=4.3、解方程:2.4、
本文标题:高中数学计算题型汇总
链接地址:https://www.777doc.com/doc-6494745 .html