您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小升初专题1小数分数混合运算简便专题
..小升初专题1小数分数混合运算之简便运算熟练掌握下列小数、分数之间的相互转化,特别是一些特殊小数化分数要记熟悉;1、把下列小数转化为分数,并且记忆下来0.5=____________;0.25=____________;0.75=___________;0.2=____________;0.4=_____________;0.6=_____________;0.8=____________;0.125=___________;0.375=____________;0.625=____________;0.875=____________;2、把下面的分数转化为小数,特别注意所用的方法例一:13135650.652020510012124480.4825254100练习题:320=___________;1720=_________;1120=__________;125=___________;925=_________;1325=__________;3、一些常用的计算性质①商不变性质:被除数和除数扩大或缩小相同的倍数,商不变例如0.25÷1.7=(0.25×100)÷(1.7×100)=25÷170=25517034;这是用来对于一些小数相除除不尽时,用来化为分数时用的;一定要化成最简分数。②积不变的性质:一个因数扩大,另一个因数缩小相同的倍数,积不变例如:120×0.25=(120÷10)×(0.25×10)=12×2.5;这个在后面乘法分配律的运用当中会详细的讲解;注意:..①对于最简分数而言,分母是2、4、5、8、10、20、25等及它们相互的乘积,一定可以化成有限小数;而以剩下的整数例如3、6、9、7、11等为分母一般都不能化为有限小数;②对于计算题:(1)结果不要写成百分数,要化成小数或者分数;(2)结果用分数表示时要化成最简分数;(3)做除法除不尽时,结果用最简分数表示;加法的交换律a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)a-b-c=a-(b+c)a-b+c=a-(b-c)额外补充a-(b+c)=a-b-c;a-(b-c)=a-b+c;a+(b+c)=a+b+c这几个问题就转化为去括号问题1、括号前面是“+”,括号里面数字不改变符号2、括号前面是“--”括号里面数字改变符号一、拆和法,就是把一个数拆成两个数的和,以方便计算(注意这类题一般都是整数乘以分数题或带分数乘以分数题,且整数是这个分数分母的倍数,或与之相近的数)①5047×101200×19919827×2615252×126②73151×8164171×9122201×21171×5761..2、拆差法,就是把一个数拆成两个数的差,以方便计算(注意这类题一般都是整数乘以分数题或带分数乘以分数题,且整数是这个分数分母的倍数,或与之相近的数)2017×9963×64632511×994544×373、加法交换律法原理:加法的交换律a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)原则:多个数相加一般来说按下面的步骤查看是否有简便运算:1、凑整,对于整数、小数来说看能否凑到整十,整百,整千;对于分数来说看能否凑到整数;2、若有多个分数:可以先把分母相同的分数先相加;3、若是分数和小数相加,可以按照前面学过的处理;(1)278+143+322(2)918+751+182+249(3)6.85+3.27-1.85(4)5.13-2.25+3.87(5)3127+561+2125+465(6)3154+273+41511+744、乘法交换律法,乘法分配率(这个是考试的重点)..原理:乘法的交换律a*b=b*a;乘法的结合律:(a*b)*c=a*(b*c)乘法分配率(a+b)*c=a*c+b*c原则:1、凑整,对于整数、分数来说看能否凑到整数;或约分后成为一个整数2、若有多个分数:可以先把能够约分的约掉再进行乘法运算(1)21817×3÷21817×3(2)1831×172×31716×0(3)301×(2006×30×2005)×20061(4)2006×(1-21)×(1-31)×……×(1-20051)×(1-20061)5、拆积法,就是把一个数拆成两个数的积,以方便计算(注意这类题一般都是整数乘以整数题或分数乘以整数题,且整数是这个分数分母的倍数,或与另外一个因数相同的数)125×25×3212.5×16×52.5×0.125×3201741×81×3212.5×941×640.125×81×64..6、除积法,可以用除以一个数等于乘以这个数的倒数来计算(这类题被除数一定是除数的倍数,或与除数相同)231÷(231×78)999÷(333×25)7、连减法a-b-ca-(b+c)(1)587-232-231(2)798-(65+398)8、连除法a÷b÷c=a÷(b×c)1、100÷25÷410÷2.5÷49、乘法结合律法2.7×0.25×0.4125×18×8×2132×0.15×13125×32×2.511、综合法1、52×11.1+2.6×7782、6.8×16.8+19.3×3.23、81.5×15.8+81.5×51.8+67.6×18.5..12、运算拆分法简化计算运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。一般地,形如1a×(a+1)的分数可以拆成1a-1a+1;形如1a×(a+n)的分数可以拆成1n×(1a-1a+n),形如a+ba×b的分数可以拆成1a+1b等等。同学们可以结合例题思考其中的规律。例题1。计算:11×2+12×3+13×4+…..+199×100原式=(1-12)+(12-13)+(13-14)+…..+(199-1100)=1-12+12-13+13-14+…..+199-1100=1-1100=99100练习1计算下面各题:1.14×5+15×6+16×7+…..+139×402.110×11+111×12+112×13+113×14+114×15例题2。计算:12×4+14×6+16×8+…..+148×50原式=(22×4+24×6+26×8+…..+248×50)×12=【(12-14)+(14-16)+(16-18)…..+(148-150)】×12=【12-150】×12..=625练习2计算下面各题:1.13×5+15×7+17×9+…..+197×992.11×4+14×7+17×10+…..+197×10013、分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式..课后作业334×13373×72232001×2000199987×8639931×14119981997×19995975×1611351×61+2872×974131×43+5141×54474+532-74895+43+241-95(1+21)×(1+41)×(1+61)×(1+81)×(1+101)×(1-31)×(1-51)×(1-71)×(1-91)×(1-111)..(1+21)×(1-21)×(1+31)×(1-31)×……×(1+991)×(1-991)3109÷(15×3109)19.75÷(1943×0.5)156-(329-254)583-394-(295-85)7.125÷0.125÷16÷2161÷0.875÷17125×16×31(17×223)×(171×22)36×2.5×113.75×735-83×5730+16.2×62.51234+2341+3412+412323456+34562+45623+56234+623452.8×23.4+2.8×65.4+11.1×8×7.2..1994199219931199419939(972+792)÷(75+95)
本文标题:小升初专题1小数分数混合运算简便专题
链接地址:https://www.777doc.com/doc-6511518 .html