您好,欢迎访问三七文档
习题171当x0时2xx2与x2x3相比哪一个是高阶无穷小?解因为02lim2lim202320xxxxxxxxx所以当x0时x2x3是高阶无穷小即x2x3o(2xx2)2当x1时无穷小1x和(1)1x3(2))1(212x是否同阶?是否等价?解(1)因为3)1(lim1)1)(1(lim11lim212131xxxxxxxxxxx所以当x1时1x和1x3是同阶的无穷小但不是等价无穷小(2)因为1)1(lim211)1(21lim121xxxxx所以当x1时1x和)1(212x是同阶的无穷小而且是等价无穷小3证明当x0时有(1)arctanx~x(2)2~1sec2xx证明(1)因为1tanlimarctanlim00yyxxyx(提示令yarctanx则当x0时y0)所以当x0时arctanx~x(2)因为1)22sin2(lim22sin2limcoscos1lim2211seclim202202020xxxxxxxxxxxxx所以当x0时2~1sec2xx4利用等价无穷小的性质求下列极限(1)xxx23tanlim0(2)mnxxx)(sin)sin(lim0(nm为正整数)(3)xxxx30sinsintanlim(4))1sin1)(11(tansinlim320xxxxx解(1)2323lim23tanlim00xxxxxx(2)mnmnmnxxxxmnxmnx01lim)(sin)sin(lim00(3)21cos21limsincoscos1limsin)1cos1(sinlimsinsintanlim220203030xxxxxxxxxxxxxxxx(4)因为32221)2(2~2sintan2)1(costantansinxxxxxxxxx(x0)23232223231~11)1(11xxxxx(x0)xxxxx~sin~1sin1sin1sin1(x0)所以33121lim)1sin1)(11(tansinlim230320xxxxxxxxx5证明无穷小的等价关系具有下列性质(1)~(自反性)(2)若~则~(对称性)(3)若~~则~(传递性)证明(1)1lim所以~(2)若~则1lim从而1lim因此~(3)若~~1limlimlim因此~
本文标题:17
链接地址:https://www.777doc.com/doc-6513327 .html