您好,欢迎访问三七文档
习题811判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界(1){(xy)|x0y0}解开集无界集导集为R2边界为{(xy)|x0或y0}(2){(xy)|1x2y24}解既非开集又非闭集有界集导集为{(xy)|1x2y24}边界为{(xy)|x2y21或x2y24}(3){(xy)|yx2}解开集区域无界集导集为{(xy)|yx2}边界为{(xy)|yx2}(4){(xy)|x2(y1)21}{(xy)|x2(y2)24}解闭集有界集导集与集合本身相同边界为{(xy)|x2(y1)21}{(xy)|x2(y2)24}2已知函数yxxyyxyxftan),(22试求f(txty).解)(tan)()()()(),(22tytxtytxtytxtytxf),(tan2222yxftyxxyyxt3试证函数F(xy)lnxlny满足关系式F(xyuv)F(xu)F(xv)F(yu)F(yv)证明F(xyuv)ln((xy)ln(uv)(lnxlny)(lnulnv)lnxlnulnxlnvlnylnulnylnvF(xu)F(xv)F(yu)F(yv)4已知函数f(uvw)uwwuv试求f(xyxyxy)解f(xyxyxy)(xy)xy(xy)(xy)(xy)(xy)xy(xy)2x5求下列各函数的定义域(1)zln(y22x1)解要使函数有意义必须y22x10故函数的定义域为D{(xy)|y22x10}(2)yxyxz11解要使函数有意义必须xy0xy0故函数的定义域为D{(xy)|xy0xy0}(3)yxz解要使函数有意义必须y00yx即yx于是有x0且x2y故函数定义域为D={(xy)|x0y0x2y}(4)221)ln(yxxxyz解要使函数有意义必须yx0x01x2y20故函数的定义域为D={(xy)|yx0x0x2+y21}(5)222222221rzyxzyxRu(Rr0)解要使函数有意义必须R2x2y2z20且x2+y2+z2r20故函数的定义域为D={(xyz)|r2x2+y2+z2R2}(6)22arccosyxzu解要使函数有意义必须x2+y20且1||22yxz即z2x2+y2故函数定义域为D={(xyz)|z2x2+y2x2+y20}6求下列各极限(1)22)1,0(),(1limyxxyyx解110011lim22)1,0(),(yxxyyx(2)22)0,1(),()ln(limyxexyyx解2ln01)1ln()ln(lim22022)0,1(),(eyxexyyx(3)xyxyyx42lim)0,0(),(解xyxyyx42lim)0,0(),()42()42)(42(lim)0,0(),(xyxyxyxyyx41)42(1lim)0,0(),(xyyx(4)11lim)0,0(),(xyxyyx解11lim)0,0(),(xyxyyx)11)(11()11(lim)0,0(),(xyxyxyxyyx2)11lim)11(lim)0,0(),()0,0(),(xyxyxyxyyxyx(5)yxyyx)sin(lim)0,2(),(解yxyyx)sin(lim)0,2(),(221sinlim)0,2(),(xxyxyyx(6)22)()cos(1lim2222)0,0(),(yxyxeyxyx解22221lim)cos(1lim)()cos(1lim)0,0(),(2222)0,0(),(2222)0,0(),(yxyxyxyxyxeyxyxeyxyx01sinlimcos1lim00ttttt7证明下列极限不存在(1)yxyxyx)0,0(),(lim证明如果动点p(xy)沿y0趋向(00)则1limlim00)0,0(),(xxyxyxxyyx如果动点p(xy)沿x0趋向(00)则1limlim00)0,0(),(yyyxyxyxyx因此极限yxyxyx)0,0(),(lim不存在(2)22222)0,0(),()(limyxyxyxyx证明如果动点p(xy)沿yx趋于(00)则1lim)(lim44022222)0,0(),(xxyxyxyxxxyyx如果动点p(xy)沿y2x趋向(00)则044lim)(lim2440222222)0,0(),(xxxyxyxyxxxyyx因此极限22222)0,0(),()(limyxyxyxyx不存在8函数xyxyz2222在何处间断?解因为当y22x0时函数无意义所以在y22x0处函数xyxyz2222间断9证明0lim22)0,0(),(yxxyyx证明因为22||||2222222222yxyxyxyxxyyxxy所以02lim||lim022)0,0(),(22)0,0(),(yxyxxyyxyx因此0lim22)0,0(),(yxxyyx证明因为2||22yxxy故22||22222222yxyxyxyxxy对于任意给定的0取2当220yx时恒有22|0|2222yxyxxy所以0lim22)0,0(),(yxxyyx10设F(xy)f(x)f(x)在x0处连续证明对任意y0RF(xy)在(x0y0)处连续证明由题设知f(x)在x0处连续故对于任意给定的0取0当|xx0|时有|f(x)f(x0)|作(x0y0)的邻域U((x0y0))显然当(xy)U((x0y0))时|xx0|从而|F(xy)F(x0y0)||f(x)f(x0)|所以F(xy)在点(x0y0)处连续又因为y0是任意的所以对任意y0RF(xy)在(x0y0)处连续
本文标题:81
链接地址:https://www.777doc.com/doc-6514046 .html