您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > MBR动态曝气及其在膜污染控制中的应用研究
MBR。MBR[1]。TMP[2]。MBR[3]。MBR、。DO[4]。Le-ClechEPS[5]。MBR[6]。。MBR。MBR[7]。MBRTMPKMBR。11.1。MBRNaHCO31gNH4+-N7.14g。COD(584.9±88.2)mg/LTOC、NH4+-N、(73.60±48.87)、(42.62±19.25)、(21.04±10.41)mg/L94.58±26.31NTUpH8.46±0.6915.10~21.80mg/Ln=18。710055MBR。3.00、0.75、0.751.500.751.503.00m3/(m2·h)MBR20kPa25.67、19.17、23.00、26.17hTMPK1.26、0.82、1.32、0.95Pa/s5.45、5.43、5.52、3.34Pa/sMBR33.88、25.30、30.36、34.54L。MBRCOD、TOC79.30%、75.04%、64.94%。0.751.503.00m3/(m2·h)TMPMBR。MBRTQ028.8X703.1A1000-3770(2016)02-0092-0042015-05-11201161201100082010JZ0081990-18220837843xiashawan99@163.com13087503299yangyongzhe@xauat.edu.cn42220162Vol.42No.2Feb.,2016DOI:10.16796/j.cnki.1000-3770.2016.02.022921.2MBR1。50L15L35L200%HRT38h。0.11m20.4μm。15sTMP。1.3MBR1。TMPmax=20kPa。TMP20kPa0.5%0.2%8h20h。1.4MBRTMP。1I。3.00m3/(m2·h)MBRTMP20kPa。2II。0.75m3/(m2·h)MBRTMP20kPa。TMPTMPTMPTMP323TMP。0.75m3/(m2·h)TMP5kPa。3III。0.75m3/(m2·h)MBRTMP5kPa1.50m3/(m2·h)TMP20kPa。TMP223TMP。0.75~1.50m3/(m2·h)TMP7kPa。4IV。0.75m3/(m2·h)MBRTMP5kPa1.50m3/(m2·h)TMP7kPa3.00m3/(m2·h)TMP20kPaTMP。1.5TMPTMPTMPtTMPKK=dΔTMP/dt。TMPK。22.1TMPTMP2。2I~IVTMP20kPa25.67、19.17、23.00、26.17h。IIIIIIVMBRIVIIIIIVTMP20kPaIVI。MBR400L/(m2·h)800L/(m2·h)TMP1.3kPa/d0.7kPa/dIIIIIIIV3.000.750.751.500.751.503.0015151515828282829.3~11.99.3~11.99.3~11.99.3~11.91MBRTab.1OperatingconditionsoftheMBRsystem/(m3·m-2·h-1)/(L·m-2·h-1)/min/℃1MBRFig.1SchematicdiagramoftheMBRsystem2TMPFig.2ThevariationcharacteristicsofTMPunderdifferentconditions0510152025300510152025IIIIIIIVTMP/kPat/h MBR93IIIIIIVTMP1/kPa=1.718exp(0.0912t/h)TMP2/kPa=1.334exp(0.1402t/h)TMP3/kPa=1.886exp(0.1035t/h)TMP4/kPa=2.269exp(0.0893t/h)0.98980.99640.99060.96632TMPTab.2TheexponentialfunctionofTMPincreaseunderdifferentconditionsR2[8]。I~IVTMPe2。24TMPTMP4TMP。4TMPIVMBRIVTMPTMP。2TMPMBR12h。TMP32TMPTMPTMPTMP“”[9-10]。2~IIITMP“”IVTMPTMP“”。MBRMBRIVTMP“”。MBR2TMP“”。IVTMP“”。2.2KMBR10minTMPKKTMP[11]。I、II、IIIIVK1、K2、K3K4K3。3MBRKKK23K4。MBRTMP20kPaK11.26Pa/s5.45Pa/s25.67hK20.82Pa/s5.43Pa/s19.17hK31.32Pa/s5.52Pa/s23hK40.95Pa/s3.34Pa/s26.17h。23TMPKIV。Tardieu[12]。3K1、K2K3KK413h13hK4K4K1、K2K3。IVMBR13h1.50m3/(m2·h)3.00m3/(m2·h)TMP。MBR1.50m3/(m2·h)3.00m3/(m2·h)MBRTMPMax=25kPaTMP[13]。IV0.751.503.00m3/(m2·h)。2.3MBR3。3MBRCOD、TOCNH4+-N。COD、TOC、NH4+-N79.30%、75.04%、64.94%。MBR3KFig.3ThevariationcharacteristicsofKunderdifferentconditions05101520253001234567IK IIK IIIK IVK K/ Pa s t/h42294300、500、800L/hCOD90%、97%、96%[14]1.50、3.00m3/(m2·h)MBRCODNH4+-N80.74%、80.23%96.79%、97.55%99.34%、98.84%MBR[13]。。2.4MBRI~IVMBR33.88、25.30、30.36、34.54L。IVII。20kPaMBRIV。2.5HAILEAACO-318220V50Hz35W70L/min25kPa。426.51W/L。MBRI~III3.00、0.75、0.751.50m3/(m2·h)IIIIIIIV0.751.503.00m3/(m2·h)I25.67hIV26.17hIVI。IV。3MBR1IV0.751.503.00m3/(m2·h)TMP“”TMP“”MBR2K。2IVMBRMBR。39.3~11.9℃MBR20~30℃。[1]NegareshE,Le-ClechP,ChenV.Foulingmechanismsofmodelextracellularpolymericsubstancesinsubmergedmembranereactor[J].Desalination,2006,200(1):715-717.[2]Le-ClechP,ChenV,FaneTAG.Foulinginmembranebioreactorsusedinwastewatertreatment[J].JournalofMembraneScience,2006,284(1):17-53.[3]JuddS.Thestatusofmembranebioreactortechnology[J].TrendsinBiotechnology,2008,26(2):109-116.[4]BraakE,AllietM,SchetriteS,etal.Aerationandhydrodynamicsinsubmergedmembranebioreactors[J].JournalofMembraneScience,2011,379(1):1-18.[5]Le-ClechP,JeffersonB,JuddSJ.Impactofaeration,solidsconcentrationandmembranecharacteristicsonthehydraulicperformanceofamembranebioreactor[J].JournalofMembraneScience,2003,218(1):117-129.[6]IvanovicI,LeiknesTO.Impactofaerationratesonparticlecolloidalfractioninthebiofilmmembranebioreactor(BF-MBR)[J].Desalination,2008,231(1):182-190.[7]JuddS.TheMBRbook:principlesandapplicationsofmembranebioreactorsforwaterandwastewatertreatment[M].Elsevier,2010.[8],,,.[J].,2012,31(1):82-87.[9]ZuthiMFR,NgoHH,GuoWS.Modellingbioprocessesandmembranefoulinginmembranebioreactor(MBR):areviewtowardsfindinganintegratedmodelframework[J].Bioresourcetechnology,2012,122:119-129.[10]LeClechP,JeffersonB,ChangIS,etal.Criticalfluxdeterminationbytheflux-stepmethodinasubmergedmembranebioreactor[J].JournalofMembraneScience,2003,227(1):81-93.[11]BuzatuP,ZsiraiT,AertsP,etal.Permeabilityandclogginginanimmersedhollowfibremembranebioreactor[J].JournalofMembraneScience,2012,421:342-348.[12]TardieuE,GrasmickA,GeaugeyV,etal.HydrodynamiccontrolofbioparticledepositioninaMBRappliedtowastewatertreatment[J].JournalofMembraneScience,1998,147(1):1-12.[13],,.[J].,2014,32(12):45-51.[14],,,.MBRCOD[J].,2015,41(2):100-101.COD/(mg·L-1)ρ(TOC)/(mg·L-1)ρ(NH4+-N)/(mg·L-1)3MBRn=3Tab.3RemovalcharacteristicsofmajorpollutantinMBRn=3584.0±112.4120.9±3.888.63±27.9222.13±1.6386.13±2.9930.20±9.0799MBR95[1],,.[J].,2011,37(12):10-14.[2]VanderStarWRL,AbmaWR,BlommersD,etal.Startupofreactorsforanoxicammoniumoxidation:experiencesfromthefirstfullscaleanammoxreactorinRotterda[J].WaterResearch,2007,41(18):4149-4163.[3],,.-[J].,2014,40(4):11-15.[4],,,.[J].,2012(8):22-25.[5]PxizG,JeisonD,RubilarO,etal.Nitrification-denitrificationvianitriteaccumulationfornitrogenremovalfromwastewaters[J].BioresourTechnol.,2006,97(2):330-335.[6
本文标题:MBR动态曝气及其在膜污染控制中的应用研究
链接地址:https://www.777doc.com/doc-6538502 .html