您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 不同电子受体低氧条件下生物反硝化过程中氧化亚氮产量王莎莎
37820118TECHNOLOGYOFWATERTREATMENTVol.37No.8Aug.,2011N2OCO2150~300。114NO[1]。N2O。N2O0.3×1012~3×1012kgN2O21.5%~25%[2]。。A/O。。Park[3]NO2--NN2O。、。。11.1SBRNOx--N1mg·L-1COD50mg·L-1。96%。NaNO2NaNO3NOx--N40mg·L-1。C/N5。1.21。SBR2.4L。100124SBR。ρ(NOx--N)=40mg·L-10.5mg·L-1。N2O0.762mg·L-1N2O6.947mg·L-1N2O9.12。N2O1NO2-2DO3。N2OX703.1A1000-3770(2011)08-0058-0032010-11-12“”2009BAC57B01200911031100111985-010-67392627E-mailpyz@biut.edu.cn DOpHGC1Fig.1Schematicdiagramofexperimentalsystem58DOI:10.16796/j.cnki.1000-3770.2011.08.014ρ(DO)=0.5mg·L-1。25.0±1.0℃。10minN2O。N2O。1.3Multi340iDOpH。COD、NO2--N、NO3--N[4]。N2O6890NHP-Plot/30m×0.53mm×25μm。N2O110℃180℃ECD300℃。N2ON2O。0.5mL1000mg·L-1HgCl2。N230℃0.5hN2ON2O[5]。2N2ON2O。ρ(DO)=0.5mg·L-1。N2O-N2N2O-NN2O-N。2.1NO3--NN2O2ρ(NO3--N)=40mg·L-1N2ONO3--NNO2--N。NO3--NNO2--N10min0.026mg·L-1。DONO3-NO2-NO2-。NO2-NO2--N。10minN2ONO2--N1.395mg·L-1·h-1。10minN2ONO3-NO2--N2ODONO3-N2O。N2O。N2ON2ON2ON2N2O。2.2NO2--NN2O3ρ(NO2--N)=40mg·L-1N2O-NNO2-。NO2--NN2O-NN2O-Nt=10min5.00mg·L-10.17mg·L-1N2O-N12.687mg·L-1·h-1。N2ON2ON2ON2O。N2ON2ON2ON2N2O。01020304050607080900246810 /min N O/mg L 010203040NO- -N/mg L 3NO2--NN2OFig.3ProductionofN2Otakingnitriteaselectronacceptorduringdenitrificationprocess0102030400.00.20.40.60.81.0 N O NO- -N/mg L /min 010203040 NO- -N /mg·L 2NO3--NN2OFig.2ProductionofN2Otakingnitrateaselectronacceptorduringdenitrificationprocess593782.3N2O4N2O。ρ(NO3--N)=40mg·L-1N2O-N0.762mg·L-1t=40minN2Oρ(NO2--N=40mg·L-1N2O-N6.947mg·L-1t=80minN2O。ρ(NO2--N)=40mg·L-1N2O-Nρ(NO3--N)=40mg·L-19.12Zeng。Zeng[6]SNDPRNO2-NO3-N2ONO2-N2ONO3-N2O5。NO2-。AlinsafiA[7]NosN2O。DOLetey[8]N2ONO3-N2ON2ON2N2O。。Schalk-Otte[9]。NO2-NOx-N2ON2O。ParkInamori[10]N2ON2ONO2-DO0.2~0.5mg·L-1NO2-N2O。N2ON2O。3N2ON2O6.947mg·L-1N2O0.762mg·L-1。N2O。NO2-。DON2O。DODO。[1]IPCC.Climatechange:thescienceofclimatechange[M].Cambridge:CambridgeUniversityPress,1996.[2]KhalILMAK,RasmussenRA.Theglobalsourcesofnitrousoxide[J].JournalofGeophysicalResearch,1992,97(D13):14651-14660.[3]ParkKY,InamoriY,MizuochiM,etal.Emissionandcontrolofnitrousoxidefromabiologicalwastewatertreatmentsystemwithintermittentaeration[J].JournalofBioscienceandBioengineering,2000,90(3):247-252.[4]APHA(AmericanPublicHealthAssociation).Standardmethodsfortheexaminationofwaterandwastewater[M].Baltimore:PortCityPress,1998.[5]NodaN,KanekoN,MikamiM,etal.EffectsofSRTandDOonN2Oreductaseactivityinananoxic-oxicactivatedsludgesystem[J].WatSciTechnol.,2003,48(11-12):363-370.[6]ZengRJ,LemaireR,YuanZ,etal.Simultaneousnitrification,denitrificationandphosphorusremovalinalab-scalesequencingbatchreactor[J].JounalofBiotechnologyBioengineering,2003,84(2):170-178.[7]AlinsafiA,NAdouani,etal.Nitriteeffectonnitrousoxideemissionfromdenitrifyingactivatedsludge[J].ProcessBiochemistry,2008,43(6):683-689.[8]LeteyJ,ValorasN,FochtD,etal.Nitrousoxideproductionandreductionduringdenitrificationasaffectedbyredoxpotential[J].SoilSciSocAmJ.,1981,45(4):727-730.[9]Schalk-OtteS,SeviourRJ,KuenenJG,etal.Nitrousoxide(N2O)productionbyAlcaligenesenfaecalisduringfeastandfamine[J].WatRes.,2000,34(7):2080-2088.[10]ParkKY,LeeJW,InamoriY,etal.EffectsoffillmodesonN2OemissionfromtheSBRtreatingdomesticwastewater[J].WaterScienceandTechnology,2001,43(3):147-150.670102030405060708090012345678 N O/mg L /min 4Fig.4ProductionofN2Oduringdenitrificationunderdifferentelectronacceptors60[1],.[M].:,2008.[2],.[J].,2009,29(1):65-71.[3]DrAnilKumarPabby.Membranetechniquesfortreatmentinnuclearwasteprocessing:globalexperience[J].MembraneTechnology,2008:9-13.[4]GrazynaZakrazeska-Trznadel,MarianHarasimowicz,etal.Membraneprocessesinnucleartechnology-applicationforliquidradioactivewastetreatment[J].SeparationandPurificationTechnology,2001,22-23:617-625.[5]IAEA.Applicationofmembranetechnologiesforliquidradioactivewasteprocessing:IAEATechnicalReportsSeriesNo.431[R].IAEA,Vienna,Austria,2005:1-145.[6]AGChmielewski,M.Harasimowicz.Influenceofgammaandelectronirradiationontransportpropertiesofnanofiltrationandhyperfiltrationmembranes[J].Nukleonika,1997,42(4):857-862.EXPERIMENTALSTUDYONTHETREATMENTOFSIMULATEDRADIOACTIVEWASTEWATERFROMPRIMARYLOOPBYREVERSEOSMOSISWangXinpeng1,KuaiLinping1,ShaoJiahui2,LiWenxi2(1.SchoolofNuclearScienceandEngeering,ShanghaiJiaoTongUniversity,Shanghai200240,China;2.SchoolofEnvironmentalScienceandEngeering,ShanghaiJiaoTongUniversity,Shanghai200240,China)Abstract:Aromaticpolyamidecompositereverseosmosiswasselectedtotreatradioactivewastewaterfromprimaryloop.Theradioactivewastewaterfromprimaryloopcontainedhigh-concentrationofboricacid.Theeffectofboricacidandnickelionontheretentionefficiencyofnon-activenuclidescobaltionsandmembranepermeationfluxwereexploredunderdifferentconcentrationsandoperatingpressures.Thestudyshowedthatboricacidintheradioactivewastewatercouldunderminetheretentionefficiencyofcobalt.Whentheconcentrationofboricaciddecreasedfrom2500to500mg·L-1,theretentionefficiencyrisedfrom79.3%to88.8%.Theretentionefficiencywen
本文标题:不同电子受体低氧条件下生物反硝化过程中氧化亚氮产量王莎莎
链接地址:https://www.777doc.com/doc-6545404 .html