您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 南京市2020年中考数学模拟试题及答案
1南京市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。2.考生必须把答案写在答题卡上,在试卷上答题一律无效。考试结束后,本试卷和答题卡一并交回。3.本试卷满分120分,考试时间120分钟。一、选择题(本题共12小题。每小题3分,共36分。在每小题给出的四个选项中,只有一项是正确的。)1.2020相反数的绝对值是()A.-20201B.﹣2020C.20201D.20202.下列计算正确的是()A.4a﹣2a=2B.2x2+2x2=4x4C.﹣2x2y﹣3yx2=﹣5x2yD.2a2b﹣3a2b=a2b3.第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是()A.6.88×108元B.68.8×108元C.6.88×1010元D.0.688×1011元4.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.805.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个6.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()A.25°B.30°C.35°D.50°27.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.98.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或9.如图,由下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADEC.=D.∠C=∠AED10.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,幻灯片中的图形的高度为6cm,屏幕上图形的高度为()A.6cmB.12cmC.18cmD.24cm11.如图,半径为3的⊙A经过原点O和点C(1,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.31B.22C.322D.4212.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()3A.B.C.D.二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)13.早春二月的某一天,某市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_______℃.14.若m+n=1,mn=2,则的值为.15.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为__________.16.你喜欢足球吗?下面是对某学校七年级学生的调查结果:男同学女同学喜欢的人数7524不喜欢的人数1536则男同学中喜欢足球的人数占全体同学的百分比是________.17.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x张,乙种票y张,由此可列出方程组:__________.18.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)19.(6分)已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.20.(8分)如图,锐角△ABC中,AB=8,AC=5.(1)请用尺规作图法,作BC的垂直平分线DE,垂足为E,交AB于点D(不要求写作法,保留作图痕迹);(2)在(1)的条件下,连接CD,求△ACD周长.421.(10分)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?22.(10分)如图,在△ABC中,D.E分别是AB.AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.23.(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(DCBAO,,,,在同一条直线上).测得m2AC,m1.2BD,如果小明眼睛距地面高度高度OE.DGBF,为m6.1,试确定楼的24.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB5上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.25.(12分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A.B.C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A.B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.6参考答案一、选择题(本题共12小题。每小题3分,共36分。在每小题给出的四个选项中,只有一项是正确的。)1.D2.C3.C4.B5.B6.A7.A8.C9.C10.C11.D12.D二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)13.314.15.6﹣216.50%.17.18.80三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)19.(6分)解:(x﹣y)2﹣(x+2y)(x﹣2y)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2,由,得,∴当x=﹣1,y=2时,原式=﹣2×(﹣1)×2+5×22=4+20=24.20.(8分)解:(1)如图,DE即为所求;(2)∵DE是BC的垂直平分线,∴DC=DB,∵AB=8,AC=5,∴△ACD周长=AD+DB+CA=AB+AC=13.21.(10分)解:(1)学校本次调查的学生人数为10÷10%=100名;(2)“民乐”的人数为100×20%=20人,补全图形如下:7(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.22.(10分)(1)证明:∵D.E分别是AB.AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.23.(10分)解:设E关于点O的对称点为M,由光的反射定律知,延长FAGC,相交于M,连接GF并延长交OE于H,GF∥AC,MAC∽MFG,MHMOMFMAFGAC,即BFOEOEOHMOOEMHOEBDAC,1.226.1OEOE,832OE.答:楼的高度OE为32米.24.(10分)解:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=或2,理由是:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,9∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,QC===,∴CP=QC+QP=+1,即线段CP的最大值是+1.25.(12分)解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,10∴S=AM×EM=.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC=.∵FG=2DQ,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).
本文标题:南京市2020年中考数学模拟试题及答案
链接地址:https://www.777doc.com/doc-6550555 .html